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Two-level system

for example, a '"H spin in a magnetic field, | = V2

 An arbitrary state is specified by a ket

v)=clh+c,|2)

e or a column vector

e,

« The corresponding bra is given by

w]=c(1+c, (2]

* Or arow vector

Y= (Cl* Cz*)

» States span a reduced Hilbert space

with dimension

n,=]]@I +1)
k=1

* Suppose that

1) and |2) are eigenstates

of operator A

AlD=a1) Al2)=2]2)

« If we measure A, we are certain to get

one of its eigenvalues with
probabilities

(W) =laf [l =le.f

e Note that

‘01‘2 +‘CZ‘2 =1

* Results of measurements follow

statistics, but cannot be predicted with
certainty in an individual case.




Expectation value

mean or weighted average

« The average outcome of repeated measurements on an ensemble of

identically prepared systems can be predicted.
<A> = <y/ z//> =[c”(1]+¢, (2[][ac ) +ac,|2)|=alc| +a,lc,

+ Generally (|1) and|2) don’t have to be eigenstates of A)

(A)=[c (W+c, (2[][ac|1)+ac,|2)]

=¢,'c, <1 A 1> +¢'°C, <1‘ A‘ 2> +¢,°C, <2

A

|2

A A A

d

1> +C, C, <2

= C1*(31'6‘11 + C1*(32 A12 + Cz*C1A21 + Cz*Cz Azz

* or using the vector notation

SRRLIR




Larmor precession

Energy of a classical magnetic dipole in a magnetic field along z
E :_H'BO :_/uzBO

For elementary particles with a (spin) angular momentum gy, =y1,,
this gives the familiar Hamiltonian for a nucleus in a magnetic field

H = _7/Boh|z — ha)olz or, in frequency units, H = a)olZ

C

Time evolution of state y = (Caj is determined by the Schrddinger equation

q B
E|W>:_iH gy) or, in vector notation, \il=—i|:|\|l

This gives

¢ (% 0 \c, . ¢, =—Xlo,C,
Y l=—io . :
¢, L0 —m)lc, ¢, = Kiw,C,

Integrate to find
c, =C,(0)e™™" and c,=c,(0)e"




Larmor precession

* The state of the system with initial conditions ¢,(0)=c,(0)= Y

(Ca ] [}/\/E e—ia)o'[

Vi = - it

Cp /®

 Let’s calculate the expectation value<fx>.

<fx> =y'Ty=(c, cﬂ*)(i }éj[zﬁ = 14¢,'C, + %¢,0," =Re{c,c,"} = Re{se %2} = 1/ cos it

 Likewise for< >and< >

()=t &)}, oo ]--mles}-xsnan
(i)=(es o) )l )=t - -

* In a uniform magnetic field, the expectation value <|> precesses at the
Larmor frequency.




Density operator

statistical operator

Expectation values depend on products
of coefficients

<A>:c*cA +c'c, A +C,C A _+cC, C,A

a Yo aa a " ap L o’ Pa B B BB

Useful to define an operator with a
matrix representation that has these

products of coefficients as its elements.

IOI’S :<r‘lb‘s> :CI’CS*
This is the density operator.
_ Ca s *\ Caca* Cac,[)’*
p_(CﬂJ(Ca K )_Ecﬁca* Cﬁcﬂ*j

In general, it is the outer product of the
states

N

P=wy' or p=|y)y

Expectation values are readily
calculated by taking the trace of the
product of p andA

pA: Ioaa Ioaﬂj(Aaa Aaﬂj
Poa Pos )\ Poa Py

IoaaAaa+paﬂAﬂa paaAaﬂ—l_IOaﬂAﬂﬂj

Ppa At Psp A,Ba Ppa Aaﬁ T Ppp Aﬂﬂ

<A> :Tr {pA} — paaAaa +paﬂA,Ba +pﬁaAaﬂ +pﬁﬂAﬂﬁ




Time evolution

Since
)= y)
dt

also
d .
W=l

Hence (using the product rule)
d . d
i A4

| Sl Sl

 The Liouville-von Neumann equation

describes the time evolution of the
density operator.

%p——I[H p]

* |If the Hamiltonian is time-independent,

its solution is simple.

ﬁ(t) e —iHt A(O)elHt

* A unitary transformation propagates

the density operator forward in time.

Lj _ e—il—it




Describing macroscopic systems

with the density operator

Consider a macroscopic system made
up of a large number of independent
microscopic systems with identical spin
Hamiltonians - a typical NMR sample.

It is possible to add density operators
before evaluating expectation values.

(A) +(A) =Tr{pA}+Tr{pA} =Tr{[p +p,] A}
The same applies for time evolution.

p.(0) + Py (1) =™ 5, (0)e™ +e7™ 5, (0)e™
= e ™[ 5,(0) + p,(0)]e™"

Thus, a summed density operator can
describe this macroscopic system.

We can even consider weighted
contributions from all microscopic
systems.

[A)ZZ pilbi

with P; the probability of a microscopic
system being in state p, .

The elements of p are given by

Prs = Crcs

The bar indicates the ensemble average.




Pure state vs mixed state

The microscopic states are described by
iy
a)+ae”|p)

with the amplitudes and phases of the
complex coefficients written out
explicitly.

|W>:Ca|a>+cﬂ|lg>:aaei¢a

The corresponding density operator is

aOZC aa aﬂel (¢a _¢ﬁ )
p= i -
aaaﬂe i(d,—0p) az

In a pure state, all microscopic systems
are in the same state.

N _ N
/Omicro — pensemble

In a mixed state, the phases of the

microscopic systems may vary randomly.

a2 0
p= —
0 a

Ensemble averaged density matrices
describe mixed states.

A macroscopic system at thermal
equilibrium is in a mixed state.

O



Coherences and populations

The off-diagonal elements of the density
matrix are only non-zero if there is phase
coherence between the states of the
microscopic systems.

 The diagonal elements give the
probabilities of finding a random
microscopic system in state |@) or| ) .
Hence, they represent level populations.

2 I(¢a_¢ﬂ)
0= a, a,ast « Their difference is associated with
~i(d,~¢5) ) longitudinal magnetization.
a.aaﬂe ) aﬁ N TAN
Recall slide 5: macroscopic transverse <f >:}§a2 —¥a’ M :hyN<f >
magnetization is associated with the off- Z ’
diagonal elements of the density matrix. « In thermal equilibrium, populations
T — follow the Boltzmann distribution.
:Re{aaaﬂe wfp }:aaaﬂcos(géa—qﬁﬂ); MX:hyN<IX>
~E, /kgT
a0 | _ : . /R e 0
:—Im{aaaﬁe s }—aaaﬂ5|n(¢ﬂ—¢a), M, =hyN(T,) D, =

0 %e—Eﬁ/kBT
In NMR, phase coherence/transverse
magnetization is created by applying one

or more (near-)resonant radiowave pulses.




Decompose into

The density operator can be decomposed
into a linear combination of orthogonal
basis operators.

This is analogous to expressing a vector
as a linear combination of unit vectors.

a

X

v=ae, +ae, +ae, or v=|a,

a‘Z
ith .
with unit vectors 1 0 0
0(,/11,]0
0/)10)\1

Two matrices are orthogonal if their trace

is zero.
Tr{AB} =0

basis operators

The Cartesian basis is a good choice.
i }/O 1 f—}/o —
21 0)Y li o)

; }/1 0 1_l 0

*lo -1)7 (o 1

The density operator now takes the
general form.

oY

p=al+al +al +a,l

Z 7z

The orthogonal basis operators span a
new space, Liouville space, with dimension

nL:nli




Pulse NMR experiments

Recall slide 7: if the Hamiltonian is time independent, the solution to the
Liouville-von Neumann equation takes a simple form.

pt)=UpO)" with U =™

Often a pulse NMR experiment can be described as a sequence of time
intervals governed by different, time-independent Hamiltonians.

A T 11171 2 1T-47-1 (]-1
pt)=U_.UU,p0) U ..U;
The expectation value of an observable of interest can be read out any time.

<A> ) =Tr { ,[)(t)A}

The starting state is usually thermal equilibrium.
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Equilibrium density operator

In the high-temperature limit

Yo FalleT 0 10 hay, |2k, T 0
Peq = By kT | % +7
0 e trlke 0 1 0 —ha, 2k, T

where we have inserted E, =—} /@, and E; =, hiw, used that e’ =1+X for small X .
The identity operator is invariant throughout the experiment and can be dropped.

The prefactor gives the size of the magnetization and hence the signal strength.
Unless the absolute number of spins is of interest, it can be conveniently ignored.
yA

Hence, for the purpose of analytical calculations, we write  p(0) = p,, = |

In the subsequent calculation of the evolution of the system with time, we will get

M, (t)=a,(t) M, (t)=a,(t) M, (t)=a,(t)




Rotations

Towards the product operator formalism
To propagate the density operator we will have to evaluate expressions of the form

A(t,) =5t )M or generally e 7B Ae’® =72

Use the Baker-Hausdorff formula

o hert - Acig 8.4 5[ 8.A]]- 48[ 8.A]] -

together with the canonical commutation relations,

(1,0, =i [1,,1,]=i0, [ 1,1, ] =i, which imply that [8,[8,A]]- A

For B# A A A 2 4 A 3 5
e pe ZAl1-2-, 0 _ —i¢[B,A] A
21 4] 3! 5! shorthand notation

= ACOS¢—i[|§, A]sin¢ — | A5 Acos¢—i[l§, A]Sin¢

df B=A: A A A R PR
anaror e B A" = A A— S A
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Simple Hamiltonian

Transform to a reference frame rotating around the z-axis at the frequency
of the radiowaves.

Hamiltonian during free precession

N

H. = sz with Q= Wy — Wrp the resonance offset.

free

Hamiltonian during a radiowave pulse along the x-axis

N

H, :sz +a)1f
Assuming hard pulses
o, =y|B,>|Q

simplifies the Hamiltonian during the pulse to

N

H =ol

p X




y

Example 1: Pulse-acquire

Start in thermal equilibrium and apply H for duration of the pulse tp :

. o . X
,b(tp) e IHptpb(O)ealtp —e la)llxtp |Ze|wllxtp :e_|¢9|xlze|¢9|x
Use the shorthand notation to calculate the rotation.
A—28 Acos¢—|[B A]S|n¢
[ s COSH—I[ ]siné?: [, cos0—i-—il sin@=1,cos0—1 sing

Next, the free evolution

P(t) = et p(t )e'rt =" (1 cos@— 1, sin 9)e™
Calculate the rotation for f ( f is not affected).
— A coth—i[Iz, Iy]stt = I, cosQt—i-—il, sinQt =1, cosQt -1, sin Ot

The magnetization precesses clockwise at frequency () .

p(t)=1,cos6 -1 cosQtsind+1, sinQtsin g

v




Example 2: Spin echo

Start with the result of the previous slide for @=7z/2and 1 =7 L, <7
) ) 90° 180°
p(r)=-1,c0sQr+1, sinQ7 i
X X i
Calculate the effect of the m-pulse. !
A N R E ) > - >
[, — 0, cos—i| T, 1, [sinz=—, v v

p(t,) =1, cosQr+1,sinQr
And of the 2nd delay

[, —22 51 cosQr—i| I,,I, [sinQzr=1,cosQr—1, sinQr
|, —2 0, cosQr—i| I,,1, [sinQr=1,cosQr+1,sinQr

Regardless of offset and delay length, the magnetization ends up along y.

p(27)=1,cosQrcosQr -1, cosQrsinQz+1,sinQrcosQr+1, sinQrsinQr=1,




Summary

Pulse NMR experiments can be described using quantum mechanics.

The density operator describes the state of an ensemble, without referring
to the individual states. This is extremely useful in magnetic resonance.

The product operator formalism is a cunning way of doing analytical
density matrix calculations.

Note: Perhaps you have been wondering where the name product operator
formalism comes from? The formalism comes into its own when dealing
with two or more coupled spins - it then requires product operators like

20,8, ,...

21.S.,21 S ,21.S,,21 S
You are now ready to tackle those cases on your own. Have fun!

X< x1 x“y! X~z ySx!?




1)

2)

3)

5)

Literature

Hore, Jones, and Wimperis, NMR: The Toolkit (29 edition, 2014)

For this lecture, | largely followed their derivation of the density operator. They write
“The density operator can be derived in many ways, with varying degrees of
mathematical formality. Here we mostly use simple analogies.”

Other textbooks | consulted:

Griffiths, Introduction to Quantum Mechanics (2"d edition, 2005)

Keeler, Understanding NMR Spectroscopy (2"9 edition, 2010)

Levitt, Spin Dynamics (2"9 edition, 2008)

Schweiger and Jeschke, Principles of Pulse Electron Paramagnetic Resonance (2001)
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