Dynamic Nuclear Polarisation (Continuous Wave)

Dr. Michael A. Hope University of Warwick

Menu

Starter

DNP in a nutshell

Main Course

Trio of DNP mechanisms: Solid effect, Overhauser Effect, and Cross Effect

Dessert

A selection of experimental details

The saying goes, there are three problems with NMR...

...sensitivity, sensitivity, and sensitivity!

-Various sources

NMR Signal \propto Spin Polarisation

$$P = \tanh\left(\frac{\hbar\gamma B_0}{2k_{\rm B}T}\right) \approx \frac{\hbar\gamma B_0}{2k_{\rm B}T}$$

- ¹H at 600 MHz, 100 K: P = 0.02%
- $\gamma_e = 658 \, \gamma_H$, P = 12%
- DNP: transfer polarisation from electrons to nuclei!

An Example

DNP enable experiments that would be impractically long otherwise

E.g. natural abundance ¹³C of low concentration organic species on silica surfaces

Enhancement, $\varepsilon = I_{ON}/I_{OFF}$

(>3000× time saving)

Rossini et al., Acc. Chem. Res., 2013. Lesage et al., JACS, 2010

DNP 101

Typically organic radicals

Slow electron relaxation

At or near the EPR frequency

Sometimes paramagnetic metal ions

DNP instrumentation

Bob Griffin MIT

DNP instrumentation

University of Nottingham DNP MAS NMR Facility, UK

How to transfer polarisation?

- First example of DNP
 Now mainly liquida
- Now mainly liquids

Solid Effect

Anatole Abragam

The electron-nuclear two-level system

Solid Effect: ZQ and DQ transitions

- ZQ = zero quantum
- DQ = double quantum
- Simultaneously flip electron and nuclear spin

Solid Effect: Populations

e

αβ

- Electron spin polarisation: big (population difference)
- Nuclear spin polarisation: small (similar population)

Solid Effect: Saturating ZQ Transition

• CW microwaves act to equilibrate the populations

• Electron spin polarisation: reduced

• Nuclear spin polarisation: large <u>negative</u> enhancement

Solid Effect: Saturating DQ Transition

• CW microwaves act to equilibrate the populations

• Electron spin polarisation: reduced

• Nuclear spin polarisation: large <u>positive</u> enhancement

But wait...

multiple quantum transitions are forbidden!

Let's look at some maths

Pseudosecular coupling

•
$$\widehat{H}_I = -\omega_{0I}\widehat{I}_Z + \widehat{S} \cdot \mathbb{A} \cdot \widehat{I}$$

•
$$\widehat{H}_I = -\omega_{0I}\widehat{I}_z + A_{ZZ}\widehat{S}_Z\widehat{I}_Z + A_{ZX}\widehat{S}_Z\widehat{I}_X$$

•
$$\hat{H}_I = -\omega_{0I}\hat{I}_z + A\hat{S}_z\hat{I}_z + B\hat{S}_z\hat{I}_x$$

$$B = \sqrt{A_{zx}^2 + A_{zy}^2} \text{ (in general)} \qquad A = \begin{pmatrix} A_{xx} & 0 & A_{xz} \\ 0 & A_{yy} & 0 \\ A_{zx} & 0 & A_{zz} \end{pmatrix}$$

"Pseudosecular coupling"

Electron. Zeeman dominates, aligned with $B_0(z)$ (secular approx. for S)

Nucleus. Hyperfine coupling perturbs. Can't assume aligned with *z*

Hyperfine coupling. Assume electron and nucleus in *xz* plane

Thankamony et al., Prog. Nucl. Magn. Reson. Spectrosc., 2017. epr.ethz.ch/education/basic-concepts-of-epr/

 $\widehat{\boldsymbol{S}} = \left(\begin{array}{c} 0\\ \hat{\boldsymbol{\varsigma}} \end{array} \right)$

 $\widehat{\boldsymbol{I}} = \begin{pmatrix} I_{\mathcal{X}} \\ \widehat{I}_{\mathcal{Y}} \\ \widehat{I} \end{pmatrix}$

Tilting of axis of quantisation

$$\widehat{H}_{I} = (-\omega_{0I} + A\widehat{S}_{z})\widehat{I}_{z} + B\widehat{S}_{z}\widehat{I}_{x}$$
$$\widehat{S}_{z}\psi = m_{S}\psi = \pm \frac{1}{2}\psi$$

- Quantisation axis is tilted away from z (equivalent to mixing of α and β)
- Orientation depends on the electron spin state

Electron State	Nuclear Eigenstates
α	$rac{lpha+\deltaeta}{eta-\deltalpha}$
β	$lpha - \delta eta \ eta + \delta lpha$

High field limit:

$$\delta = \frac{B}{4\omega_{0I}} < 1\%$$

State mixing enables transitions

$$----- |\alpha\beta\rangle - \delta |\alpha\alpha\rangle$$

 $|\alpha \alpha \rangle + \delta |\alpha \beta \rangle$ ——

$$---- |\beta\beta\rangle + \delta|\beta\alpha\rangle$$

$$|\beta \alpha \rangle - \delta |\beta \beta \rangle$$
 ——

State mixing enables transitions

- Transitions are allowed between the mixed-in states
- Overall the transitions become weakly allowed, depending on the size of the pseudosecular coupling

$$\delta = \frac{B}{4\omega_{0I}}$$

 Pseudosecular coupling requires anisotropic e-n coupling. Not possible in (isotropic) liquids!

What limits the enhancement?

Enhancement is determined by how efficiently we can saturate the ZQ or DQ transition.

Strength of e-n pseudosecular hyperfine coupling vs. ω_0 Short e-n distance, lower B₀

$$\varepsilon \propto \delta^2 \propto \frac{A_{zx}^2}{\omega_{0I}^2} \propto \frac{1}{B_0^2}$$

EPR linewidth and relaxation. Narrow line and long T_{1e} easier to saturate

Microwave power. Transitions are only weakly allowed so typically need high microwave powers

Summary: Solid Effect

- Microwaves drive ZQ or DQ transitions in e-n two spin system
- Simultaneously flip both spins. Transfer polarisation from electron to nucleus
- Requires anisotropic e-n coupling. Not possible in isotropic liquids

Questions?

Overhauser Effect

"The discovery of dynamic nuclear polarisation took me two days" -Albert Overhauser

(Experimental proof by Carver and Slichter in 1953 took about 9 months)

Overhauser Effect

- Saturate allowed single quantum transitions with microwaves
- Cross-relaxation generates nuclear hyperpolarisation
- <u>If</u> ZQ and DQ rates are different

Overhauser Effect Enhancement Sign

 Sign of OE enhancement depends whether ZQ or DQ relaxation dominates

ZQ > DQDQ > ZQPositive ε Negative ε

• Unlike SE, we can't choose the sign!

Overhauser Effect Field Profile

What determines relaxation rates?

Solomon Theory

- Cross relaxation is driven by fluctuations in the hyperfine coupling at around the EPR frequency
- Hyperfine coupling can have scalar (Fermi contact) and/or dipolar components: $\mathbb{A} = A^{FC} + \mathbb{A}^{dip}$

Fermi Contact

- Only ZQ relaxation possible
- Positive enhancement

Ionel Solomon

Dipolar Coupling

- DQ > ZQ
- Negative enhancement
- Above ~1 T, SQ nuclear relaxation is too fast: no enhancement!

Overhauser Effect Field Dependence

- Pure Fermi Contact: Positive enhancement
- Dipolar coupling: Negative enhancement, only at low field
- Any dipolar contribution eventually kills OE

Overhauser Effect in Metals

- In metals, fluctuations are caused by fast moving conduction electrons
- Electrons at the Fermi level have a velocity of ${\sim}1\times10^{6}$ m/s
- Fermi contact dominates

⁷Li NMR of Li Metal

Hyperfine fluctuations in solution

e.g. TEMPO in chloroform

Dipolar coupling Modulated by relative molecular diffusion

Scalar coupling Modulated by molecular collisions

• Both FC and dipolar. ¹H only works at low field. ¹³C has less dipolar so works at 9.4 T

Liu, Bennati et al., Nat. Chem., 2017

Overhauser Effect in Insulating Solids

- OE reported in solid samples of BDPA in polystyrene
- Spectral density ascribed to fluctuations of radical
- No diffusion, dominated by Fermi contact, works at high field

Pylaeva et al., J. Phys. Chem. Lett., 2017

Overhauser Effect Summary

- Electron resonance saturated
- Cross relaxation with nucleus generates hyperpolarisation
- Sign of enhancement depends on ZQ vs DQ rate
- Mainly used in liquids
- Only works at low field (<1 T) unless dominated by scalar coupling

Cross effect

Alexander Kessenikh

Cross Effect

- Cross effect is a three-spin process
- Consider two coupled electrons, at least one of which is coupled to a nucleus
- Matching condition: $\omega_{0S1} \omega_{0S2} = \omega_{0I}$
- Flip-flop-flip transitions conserve energy
- (Weakly allowed due to state mixing. Requires anisotropic e-e coupling and e-n coupling. Like SE, but more complicated maths!)

Thankamony et al., Prog. Nucl. Magn. Reson. Spectrosc., 2017

ααβ

Cross Effect

• Saturate one electron with microwaves (shown for S_2)

Thankamony et al., Prog. Nucl. Magn. Reson. Spectrosc., 2017
Cross Effect

- Saturate one electron with microwaves (shown for S_2)
- The population of the degenerate levels are no longer equal, so the flip-flop-flip rates are unequal, generating nuclear hyperpolarisation
- Define $\omega_{0S1} > \omega_{0S2}$
- $\omega_{\mu w} = \omega_{0S2}, |\beta \alpha \beta\rangle \rightarrow |\alpha \beta \alpha\rangle$ Positive enhancement

Thankamony et al., Prog. Nucl. Magn. Reson. Spectrosc., 2017

Cross Effect

- Saturate one electron with microwaves (shown for S_2)
- The population of the degenerate levels are no longer equal, so the flip-flop-flip rates are unequal, generating nuclear hyperpolarisation
- Define $\omega_{0S1} > \omega_{0S2}$
- $\omega_{\mu w} = \omega_{0S2}, |\beta \alpha \beta\rangle \rightarrow |\alpha \beta \alpha\rangle$ Positive enhancement
- $\omega_{\mu w} = \omega_{0S1}$, $|\alpha \beta \alpha \rangle \rightarrow |\beta \alpha \beta \rangle$ Negative enhancement

Thankamony et al., Prog. Nucl. Magn. Reson. Spectrosc., 2017

Cross Effect Field Profile

Matching condition: $\omega_{0S1} - \omega_{0S2} = \omega_{0I}$

So lobes are separated by ω_{0I}

Cross effect with a fictitious spin

- Can consider a fictitious spin $X = S_1 S_2$
- $E_X = E_{S1} E_{S2} = E_I$ (cross-effect condition)
- Cross effect = flip-flops between X and I
- Polarisation $P_X = P_{S1} P_{S2}$
- Thermal equilibrium, P_X given by Boltzmann. $E_X = E_I$, so $P_X = P_I$
- If S_2 is saturated, $P_X = P_{S1}$, i.e. large polarisation
- Cross effect transfers polarisation from X to I

How to achieve the matching condition?

 $\omega_{0S1} - \omega_{0S2} = \omega_{0I}$

- Two narrow line radicals that happen to match for a certain nucleus
- Difficult to achieve in practice!

• A broad-line radical where the anisotropy is greater than the nuclear Larmor frequency

g Anisotropy

- For broadline radicals, electron g value depends on orientation
- Analogous to CSA in NMR
- Radicals with different orientations in the sample have different EPR frequencies

Cross effect with monoradicals

- Cross effect was originally observed for high concentrations (5%) of monoradicals with g-anisotropy dissolved in a polystyrene glass
- Only works when two radicals with the right orientations so that $\omega_{0S1} \omega_{0S2} = \omega_{0I}$ happen to be near each other
- This is unlikely, reducing the enhancement and requiring high concentrations!

Biradicals

- Tethered biradicals ensure that there are two electrons close together, even at low concentrations
- Designed so that the g-tensors are ~orthogonal so the electrons have different frequencies
- Optimised e-e distance to give large dipolar coupling, without too fast relaxation
- Bulky groups give long T_{1e} and T_{2e} to increase electron saturation
- Enhancement by factor $\varepsilon_H \approx 200$

Hybrid biradicals

- Bi-nitroxides were optimised at 9.4 T (400 MHz)
- EPR linewidth $\propto B_0$ when dominated by g anisotropy
- At higher field, becomes harder to saturate, reducing enhancement
 (ε ≈ 20 at 900 MHz)
- Hybrid biradicals have a narrow line radical tethered to a wideline radical
- Narrow line can be easily saturated
- Narrow wide = ω_{0I}
- $\varepsilon \approx 200$ at 900 MHz

Wisser et al., JACS, 2018. Berruyer et al., J. Phys. Chem. Lett., 2020

MAS DNP

What about the MAS?

Cross Effect under MAS

- Electron frequencies are orientation dependent
- Under MAS, they become time dependent
- At certain orientations, the levels have the same energy
- Called a level crossing

Rotor rotation

Thurber and Tycko, J. Chem. Phys., 2012

Thankamony et al., Prog. Nucl. Magn. Reson. Spectrosc., 2017

Types of Level Crossing

- Cross effect flip-flop-flips
 (circles): |βαβ⟩ ↔ |αβα⟩
 Generate nuclear polarisation
 - Electron-electron flip-flop (squares): $|\beta\alpha\rangle \leftrightarrow |\alpha\beta\rangle$ Exchange electron saturation
 - Microwave-driven electron spin flips (triangles) $|\alpha\rangle \leftrightarrow |\beta\rangle$ and $|\alpha\rangle \leftrightarrow |\beta\rangle$ Saturate the electron

Rotor rotation

Level anti crossings (LACs)

• Off-diagonal elements cause state mixing when the energy difference is small enough

•
$$\widehat{H} = \begin{pmatrix} E_1 & 0\\ 0 & E_2 \end{pmatrix}$$
 has eigenstates with energies E_1 and E_2
• $\widehat{H} = \begin{pmatrix} E_1 & W\\ W & E_2 \end{pmatrix}$ has energies $E = \frac{1}{2}(E_1 + E_2) \pm \frac{1}{2}\sqrt{(E_1 - E_2)^2 + 4W^2}$

- When W and $(E_1 E_2)$ are comparable, in vicinity of crossing, the levels repel
- Known as a level anti-crossing or avoided level crossing

What happens at a LAC?

Fast Passage

Stays in the same unperturbed state

Non-adiabatic

Slow Passage

Follows the eigenstates

Adiabatic

How fast or slow?

- Landau-Zener equation:
- Probability of changing state (adiabatic passage),

$$P = 1 - \exp\left(-\frac{2\pi W^2}{d\Delta E/dt}\right)$$

• High probability for large coupling (W) and slow transit (small $\frac{d\Delta E}{dt}$)

Adiabaticity of crossings

- Microwave-driven spin flips: $P \sim 50\%$
 - Allowed transitions, large W. The electron can be saturated quite easily over a few rotor periods
 - Electron-electron flip-flops: $P \approx 0.999999$
 - Strong e-e coupling, so electron saturation almost always transfers
 - The saturated electron is always the lower (higher) energy electron, so the enhancement is always positive (negative) and doesn't cancel out.

Rotor angle

Adiabaticity of crossings

- Cross effect flip-flop-flips: $P \sim 0.1\%$
 - Probability of cross effect transition is low
 - Nuclear $T_1 \sim 1 10 \text{ s} = 10^3 10^4 \text{ rotor periods}$
 - Over many events, hyperpolarisation builds up

- Magic-angle spinning separates the electron-microwave and cross-effect events in time
- Conditions do not need to be simultaneously satisfied
- Many more orientations contribute to DNP, <u>improving enhancements</u>

Depolarisation

- In the absence of microwaves, the cross effect events still occur
- Electron-electron flip-flops also occur, acting to equalise the electron polarisations, reducing the difference polarisation $P_X = P_{S1} P_{S2}$
- $P_X < P_I$, so cross effect *reduces* the nuclear polarisation
- This is called depolarisation
- Reduction in NMR signal under MAS, without microwaves
- Signal enhancement is overestimated vs thermal

 $\varepsilon = I_{\rm ON}/I_{\rm OFF}$

Cross Effect Summary

- Two coupled electrons and a coupled nuclear spin
- One of the electrons is saturated by microwaves
- Cross-effect flip-flop-flips transfer electron difference polarisation to nucleus
- Typically biradicals with g-anisotropy are used to satisfy $\omega_{0S1} \omega_{0S2} = \omega_{0I}$
- Under MAS, saturation and cross-effect events happen at different points of the rotor period, making CE more efficient

Questions?

Summary

Running DNP experiments

DNP of Frozen Solutions

- Polarising agent (e.g. biradical) is dissolved in a glass-forming solvent (along with a target molecule)
- Flash frozen to form a glass with well dispersed radical
- Partially deuterated solvent so hyperpolarisation not diluted too much
- Radical concentration optimised to give enough polarisation sources, without strong radicalradical interactions

DNP of Frozen Solutions

- Probe pre-cooled to 100 K
- Warm sample is (quickly) inserted to flash freeze
- For organic solvents (e.g. TCE), multiple insert/eject cycles to degas oxygen (paramagnetic relaxation sink)
- Turn on microwaves!
- ¹H-¹H spin diffusion relays hyperpolarisation away from radicals to enhance the bulk of the solvent (and dissolved target)

"Indirect DNP"

- After ¹H-¹H spin diffusion relays polarisation throughout the sample, cross polarisation transfers to the nucleus of interest
- Benefit from faster ¹H spin diffusion

Impregnation DNP

- Powdered sample is wetted with solution of polarising agents (just enough to coat the surfaces!)
- Can fill the pores of porous materials to access internal surfaces

Impregnation DNP

- Transfer from ¹H to nucleus of interest by CP
- Surface-selective if no ¹H in bulk
- Nucleus directly polarised by DNP
- Surface-selective due to slow X spin diffusion

DNP Surface-Enhanced NMR (SENS)

Rossini et al., Acc. Chem. Res., 2013

- Transfer from ¹H to nucleus of interest by CP
- Surface-selective if no ¹H in bulk
- Nucleus directly polarised by DNP
- Surface-selective due to slow X spin diffusion

Relayed DNP

- Efficient ¹H spin diffusion into bulk
- $^{1}H \rightarrow X CP$ to nucleus of interest

- No ¹H in sample
- Slow X spin diffusion
- Require long X T_1

Relayed DNP by X spin diffusion

Direct DNP

Indirect DNP + Multi-CP

Metal-ion DNP

- Most paramagnetic metals relax too quickly for efficient DNP
- **Except** high-spin ions with no orbital angular momentum
- Mn^{2+} (S = 5/2), Gd³⁺ (S = 7/2), octahedral Cr³⁺ (S = 3/2)
- Primarily solid effect
- S > 1/2, subject to zero-field splitting (ZFS)
- Analogous to nuclear quadrupolar coupling. High-symmetry environment needed for narrow lines and efficient DNP

Metal-ion DNP

[Gd(dota)(H₂O)⁻]

- High-symmetry Gd complexes for frozen-solution / impregnation DNP
- More stable to reduction, e.g. in cell

"Endogenous" DNP

- Metal-ion doped into material
- Inherent bulk sensitivity
- Symmetric sites can give large ε

Jardon-Alvarez and Leskes, Prog. Nucl. Magn. Reson. Spec. 2023

Summary of DNP Flavours

- Impregnation / exogenous DNP
 - Indirect DNP, $^{1}H\rightarrow X$
 - ¹H in sample, ¹H \rightarrow X CP : **bulk**
 - No ¹H in sample
 - ¹H→X CP : surface
 - ¹H→X multi-CP : **bulk**
 - Direct DNP of X nuclei
 - Short recycle delay : surface
 - Long recycle delay (assuming T₁ is long enough!) : **bulk**
- Endogenous DNP : **bulk**

Temperature

- Commercial MAS DNP systems use LN2: ~100 K
- Helium spinning has also been demonstrated: 30 40 K
- Low T slows down the electron relaxation, so it's easier to saturate the transitions
- T dependence also determined by rigidity of glass (and $T_{\rm g}$)
- Overhauser effect often run at room temp: e.g., liquids, or Li metal (T_{1e} temp independent)

Lelli et al., JACS, 2015

Microwave Power

 Balance greater microwave field with higher sample temp to maximise saturation

With thanks to...

- Warwick NMR group
- Moreno Lelli
- Lyndon Emsley & LRM group
- Federico De Biasi
- Pinelopi Moutzouri
- Pierrick Berruyer

Progress in Nuclear Magnetic Resonance Spectroscopy

Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR

Aany Sofia Lilly Thankamony¹, Johannes J. Wittmann¹, Monu Kaushik, Björn Corzilius*

Appendix: Sensitivity in NMR

Sensitivity in NMR

 T_2^* : inverse of the linewidth


```
\omega_0: Larmor frequency
```

 $T_{\rm C}$: temperature of the coil

 η : volume filling-factor in the coil $V_{\rm C}$: volume of coil

Q = Q factor of coil. F: noise factor. Δf = receiver bandwidth

Lepucki et al., The normalized limit of detection in NMR spectroscopy, J. Magn. Reson. 2021

How to increase sensitivity?

- Increase concentration
- Increase T_2^* (e.g. MAS, decoupling)
- Go to higher field (SNR $\propto B_0^{3/2}$)
- Make your coil and sample bigger
- Use a cryoprobe
- Reduce T_1 (e.g. PRE)
- Run for longer!
- Increase Magnetisation

SNR
$$\approx M_{\rm m} c \eta T_2^* \sqrt{\frac{t_{\rm exp}\omega_0 V_{\rm C}\mu_0 Q\Delta f}{T_1 4Fk_{\rm B}T_{\rm C}}}$$

Appendix: Overhauser effect relaxation rates

Overhauser Effect: Rate Equations

Hausser, Dynamic Nuclear Polarization in liquids, 1968. Bennati and Orlando, eMagRes, 2019 Maly et al., J. Chem. Phys., 2008. Thankamony et al., Prog. Nucl. Magn. Reson. Spectrosc., 2017

Overhauser Effect: Rate Equations

$$\frac{d\langle I_z \rangle}{dt} = -(W_0 + 2W_1 + W_2 + W_1^0)(\langle I_z \rangle - I_0) -(W_2 - W_0)(\langle S_z \rangle - S_0) = 0$$

$$(\langle I_{Z} \rangle - I_{0}) = \frac{W_{2} - W_{0}}{W_{0} + 2W_{1} + W_{2} + W_{1}^{0}} (S_{0} - \langle S_{Z} \rangle)$$

$$\frac{\langle I_Z \rangle - I_0}{I_0} = \frac{W_2 - W_0}{W_0 + 2W_1 + W_2 + W_1^0} \frac{S_0 - \langle S_Z \rangle}{S_0} \frac{S_0}{I_0}$$

Enha

ancement:
$$\varepsilon = \frac{\langle I_Z \rangle}{I_0} = 1 + \frac{W_2 - W_0}{W_0 + 2W_1 + W_2} \frac{W_0 + 2W_1 + W_2}{W_0 + 2W_1 + W_2 + W_1^0} \frac{S_0 - \langle S_Z \rangle}{S_0} \frac{\gamma_S}{\gamma_I}$$

Overhauser Effect: Rate Equations

$$\varepsilon = \frac{\langle I_Z \rangle}{I_0} = 1 + \frac{W_2 - W_0}{W_0 + 2W_1 + W_2} \frac{W_0 + 2W_1 + W_2}{W_0 + 2W_1 + W_2 + W_1^0} \frac{S_0 - \langle S_Z \rangle}{S_0} \frac{\gamma_S}{\gamma_I}$$

$$\varepsilon = 1 - \xi f s \frac{|\gamma_S|}{\gamma_I}$$
Coupling factor: $\xi = \frac{W_2 - W_0}{W_0 + 2W_1 + W_2} = \frac{\sigma_{IS}}{\rho_I}$
Leakage factor: $f = \frac{W_0 + 2W_1 + W_2}{W_0 + 2W_1 + W_2 + W_1^0} = \frac{\rho_I}{\rho_I + W_1^0}$
Saturation factor: $s = \frac{S_0 - \langle S_Z \rangle}{S_0}$

$$\frac{d}{dt} \binom{\langle I_Z \rangle}{\langle S_Z \rangle} = -\binom{\rho_I & \sigma_{IS}}{\sigma_I S} \binom{\langle I_Z \rangle - I_0}{\langle S_Z \rangle - S_0} \qquad \rho = \text{auto-relaxation rate} \qquad \sigma = \text{cross-relaxation rate}$$

Leakage factor

•
$$f = \frac{W_0 + 2W_1 + W_2}{W_0 + 2W_1 + W_2 + W_1^0} = \frac{\rho_I}{\rho_I + W_1^0}, \quad 0 < f < 1$$

- Defines proportion of nuclear relaxation caused by the paramagnetic electron
- Typically close to 1, unless low concentration of radical (small ρ_I), or another very efficient source of relaxation (large W^0)

Saturation factor

$$\varepsilon = 1 - \xi f s \frac{|\gamma_S|}{\gamma_I}$$

•
$$s = \frac{S_0 - \langle S_Z \rangle}{S_0}$$
, $0 < s < 1$

- No saturation, $\langle S_z \rangle = S_0$, s = 0
- Full saturation, $\langle S_z \rangle = 0, s = 1$
- The greater the saturation, the larger the enhancement

•
$$s = 1 - \frac{1 + \Omega^2 T_{2e}^2}{1 + \Omega^2 T_{2e}^2 + \omega_{1e}^2 T_{1e} T_{2e}}$$
, $\Omega = \omega_{\mu w} - \omega_{0S}$ (electron offset)
 ω_{1e} = microwave power

• SQ transition is allowed, so less µw power required to saturate

Coupling factor

$$\varepsilon = 1 - \xi f s \frac{|\gamma_S|}{\gamma_I}$$

•
$$\xi = \frac{W_2 - W_0}{W_0 + 2W_1 + W_2} = \frac{\sigma_{IS}}{\rho_I}, \qquad -1 < \xi < \frac{1}{2}$$

- Measures if ZQ or DQ relaxation dominates
- $W_2 > W_0$, $\xi > 1$, negative enhancement

For positive γ_I !

- $W_2 < W_0$, $\xi < 1$, positive enhancement
- Same sign rules as solid effect but we can't choose ZQ or DQ

What determines the relaxation rates?

- Hyperfine coupling Hamiltonian: $\hat{H} = \hat{S} \cdot A \cdot \hat{I}$
- Hyperfine coupling can have scalar (Fermi contact) and/or dipolar components: $\mathbb{A} = A^{FC} + \mathbb{A}^{dip}$

Solomon Theory – Fermi Contact

• Fermi contact is isotropic:

•
$$\widehat{H} = A^{\text{FC}} \,\widehat{\mathbf{I}} \cdot \widehat{\mathbf{S}} = A^{\text{FC}} \left[\widehat{I}_z \widehat{S}_z + \frac{1}{2} \left(\widehat{I}_+ \widehat{S}_- + \widehat{I}_- \widehat{S}_+ \right) \right]$$

• This can only induce ZQ relaxation ($\hat{I}_+\hat{S}_-$ and $\hat{I}_-\hat{S}_+$ terms)

•
$$W_1 = W_2 = 0.$$
 $\xi = \frac{-W_0}{W_0} = -1.$

Positive enhancement for positive γ_I

$$\varepsilon = 1 - \xi f s \frac{|\gamma_S|}{\gamma_I}$$

Solomon Theory – Dipolar Coupling

• Dipolar coupling is anisotropic, giving SQ $(\hat{I}_+\hat{S}_z, \hat{I}_-\hat{S}_z)$ and DQ terms $(\hat{I}_+\hat{S}_+, \hat{I}_-\hat{S}_-)$

•
$$\xi = \frac{W_2^{\text{dip}} - W_0^{\text{dip}}}{W_0^{\text{dip}} + 2W_1^{\text{dip}} + W_2^{\text{dip}}}$$

• Relaxation is driven by the spectral density of the fluctuating interactions at the transition frequency, $J(\omega, \tau)$, where τ is the correlation time of the fluctuations.

$$W_0^{\text{dip}} = k_{\text{dip}} J(\omega_S - \omega_I, \tau_{\text{dip}}) \qquad W_1^{\text{dip}} = \frac{3}{2} k_{\text{dip}} J(\omega_I, \tau_{\text{dip}})$$
$$W_2^{\text{dip}} = 6 k_{\text{dip}} J(\omega_S + \omega_I, \tau_{\text{dip}})$$

• Noting that $\omega_S \gg \omega_I$, $(\omega_S - \omega_I) \approx (\omega_S + \omega_I) \approx \omega_S$

•
$$\xi = \frac{W_2^{\operatorname{dip}} - W_0^{\operatorname{dip}}}{W_0^{\operatorname{dip}} + 2W_1^{\operatorname{dip}} + W_2^{\operatorname{dip}}} = \frac{5k_{\operatorname{dip}}J(\omega_S, \tau_{\operatorname{dip}})}{7k_{\operatorname{dip}}J(\omega_S, \tau_{\operatorname{dip}}) + 3k_{\operatorname{dip}}J(\omega_I, \tau_{\operatorname{dip}})}$$

• Spectral density is Lorentzian: $J(\omega, \tau) = \frac{\tau}{1+\omega^2\tau^2}$

$$W_0^{dip} = k_{dip} J(\omega_S - \omega_I, \tau_{dip}) \qquad \qquad W_1^{dip} = \frac{3}{2} k_{dip} J(\omega_I, \tau_{dip})$$
$$W_2^{dip} = 6 k_{dip} J(\omega_S + \omega_I, \tau_{dip})$$

• Noting that $\omega_S \gg \omega_I$, $(\omega_S - \omega_I) \approx (\omega_S + \omega_I) \approx \omega_S$

•
$$\xi = \frac{W_2^{dip} - W_0^{dip}}{W_0^{dip} + 2W_1^{dip} + W_2^{dip}} = \frac{5k_{dip}J(\omega_S, \tau_{dip})}{7k_{dip}J(\omega_S, \tau_{dip}) + 3k_{dip}J(\omega_I, \tau_{dip})}$$

- Spectral density is Lorentzian: $J(\omega, \tau) = \frac{\tau}{1+\omega^2\tau^2}$
- $\tau_{\rm dip} \sim 10 100$ ps.
- At all reasonable fields, $\omega_I \tau_{dip} \ll 1$, $J(\omega_I, \tau_{dip}) = \tau_{dip}$
- Below a field of ~0.1 T, $\omega_{s} \tau_{dip} \ll 1$, $J(\omega_{s}, \tau_{dip}) = \tau_{dip}$

• $\xi = \frac{5k_{\rm dip}J(\omega_S,\tau_{\rm dip})}{7k_{\rm dip}J(\omega_S,\tau_{\rm dip}) + 3k_{\rm dip}J(\omega_I,\tau_{\rm dip})}$

$$\varepsilon = 1 - \xi f s \frac{|\gamma_S|}{\gamma_I}$$

$$J(\omega,\tau) = \frac{\tau}{1+\omega^2\tau^2}$$

• At low field, $J(\omega_S, \tau_{dip}) = J(\omega_I, \tau_{dip}) = \tau_{dip}$

•
$$\xi = \frac{5k_{dip}\tau_{dip}}{10 k_{dip}\tau_{dip}} = +\frac{1}{2}$$
, negative enhancement for positive γ_I

• At high field,
$$\omega_S \tau_{dip} \gg 1$$
, $J(\omega_S, \tau_{dip}) = \frac{1}{\omega_S^2 \tau_{dip}} \ll J(\omega_I, \tau_{dip})$

•
$$J(\omega_I, \tau_{dip})$$
 dominates, $\xi \approx \frac{1}{3k_{dip}J(\omega_I, \tau_{dip})} \approx 0$

Coupling factor field dependence

- Overhauser only works at high field if dominated by Fermi Contact (scalar)
- Any dipolar contribution will dominate at high enough field, suppressing the Overhauser effect.