NMR Crystallography:

at the interface of solid-state NMR, X-ray diffraction, and first-principles computational chemistry

Len Mueller Department of Chemistry UC Riverside

NMR and Crystallography MMR and Crys
• Crystallography
– the study of crystal structure
– the arrangement of atoms in crystal MMR and Crystallogra

Strystallography

– the study of crystal structure

– the arrangement of atoms in crystals

– WMR complements diffraction method MMR and Crystallogrand

Divideo Crystal Structure

– the arrangement of atoms in crystals

– the arrangement of atoms in crystals

– long range order vs. short range order/local charges

– long range order vs. short range

-
-

• NMR and Crystallography
• Crystallography
• the study of crystal structure
– the arrangement of atoms in crystals
• NMR complements diffraction methods
– long range order vs. short range order/local chemical structure an MMR and Crystallography

- the study of crystal structure

- the arrangement of atoms in crystals

NMR complements diffraction methods

- long range order vs. short range order/local chemical structure and

dynamics

Combi dynamics MMR and Crys

• Crystallography

– the study of crystal structure

– the arrangement of atoms in crysta

• NMR complements diffractic

– long range order vs. short range or

dynamics

• Combination

– chemically-detailed c Crystallography

— the study of crystal structure

— the arrangement of atoms in crystals

NMR complements diffraction methods

— long range order vs. short range order/local chemical structure and

dynamics

Combination

-
- Crystallography

 the study of crystal structure

 the arrangement of atoms in crystals

NMR complements diffraction methods

 long range order vs. short range order/local chemical s

dynamics

 chemically-detailed cry and function

Determination of molecular symmetry in crystalline naphthalene using solid-state NMR

Julio C. Facelli^{*†} & David M. Grant^{*}

* Department of Chemistry and † Utah Supercomputing Institute, University of Utah, Salt Lake City, Utah 84112, USA

NATURE · VOL 365 · 23 SEPTEMBER 1993

The use of solid-state NMR methods for refining structural data should be especially attractive in the study of biomolecules with molecular weights in the range $10-20 \times 10^3$, where diffraction data have even larger structural errors. Many types of crystalline imperfections, which degrade diffraction data, have no effect on chemical-shift data that are not sensitive to such imperfections as translational disorder or the absence and/or occlusion of a given molecular impurity. A ¹³C-labelled atom in a large molecule may be observed with the magnification factor of the isotopic enrichment, allowing one to focus on the active sites of larger molecular systems while avoiding spectral interference from less relevant parts of the molecule.

First pairing of NMR, X-ray, and ab initio comp. chemistry

Outline

•The Tools of NMR Crystallography by way of two applications …

•Materials Science: Photomechanical Materials

•Structural Biology: Enzyme Active Sites

Along the Way … A Few Helpful Tools and (STRONG) Opinions Along the Way ... A Few Helpful

Tools and (STRONG) Opinions

First principles calculations, choice of functional, and a

priori linear rescaling

A Statistics and the assignment of model probabilities Along the Way ... A Few Helpful

Tools and (STRONG) Opinions

• First principles calculations, choice of functional, and a

priori linear rescaling

• Statistics and the assignment of model probabilities

• Visualizing ten Along the Way ... A Few Helpful

Tools and (STRONG) Opinions

• First principles calculations, choice of functional, and a

priori linear rescaling

• Statistics and the assignment of model probabilities

• Visualizing ten

- priori linear rescaling
-
-
- First principles calculations, choice of functional, and a
• First principles calculations, choice of functional, and a
• priori linear rescaling
• Statistics and the assignment of model probabilities
• Visualizing tenso applied

Outline

•Materials Science: Photomechanical **Materials**

•Structural Biology: Enzyme Active Sites

Photomechanical Materials Group

Beran Lab: Theory and Computational Chemistry

Bardeen Lab:

Funding: NSF

Crystallography

CrystEngComm 18, 7319 (2016) Chem Sci 14, 937 (2023)

Photomechanical Materials

- **Photomechanic**
• Use photochemical reactions to
• turn photons into mechanical work
• Goal: atomic-level basis for the turn photons into mechanical work **Photomechanic**
• Use photochemical reactions to
turn photons into mechanical work
• Goal: atomic-level basis for the
macroscopic response
- macroscopic response

9-Tertbutyl-Anthracene Ester (9TBAE) Nanorods **Anthracene Ester (9T
• 200 nm x 60 μm nanorods
• 200 nm x 60 μm nanorods
• single crystal (TEM)
• self-organize in anodic alumina thracene Ester (9TBA

Nanorods**

<sup>00 nm x 60 µm nanorods

- single crystal (TEM)

- self-organize in anodic alumina

oxide (AAO) templates</sup> 1 **thracene Ester (9TBAE)**
 Nanorods

<sup>00 nm x 60 µm nanorods

- single crystal (TEM)

- self-organize in anodic alumina

oxide (AAO) templates

_{cpand} ~8%</sup> **Anthracene Ester (9T

Manorods**

• 200 nm x 60 µm nanorods

• single crystal (TEM)

• self-organize in anodic alumina

• oxide (AAO) templates

• Expand ~8%

• [4+4] photodimerization (365 nm) **Anthracene Ester (9TBAE)**

• 200 nm x 60 µm nanorods

• single crystal (TEM)

• self-organize in anodic alumina

• oxide (AAO) templates

• Expand ~8%

• [4+4] photodimerization (365 nm)

• $\frac{1}{RSC Adv 5 (2015)}$

- -
	- oxide (AAO) templates
-
-

AAO template

Image: Bae et al, RSC Adv 5 (2015)

9-Tertbutyl-Anthracene Ester (9TBAE) Nanorods **Carl Ester (9TBAE)
Prods**
• 200 nm x 60 μm nanorods
• single crystal (TEM)
• self-organize in anodic alumina **ne Ester (9TBAE)

Ods**

<sup>00 nm x 60 µm nanorods
- single crystal (TEM)
- self-organize in anodic alumina

oxide (AAO) templates</sup> **ne Ester (9TBAE)

Ods**

<sup>00 nm x 60 µm nanorods

- single crystal (TEM)

- self-organize in anodic alumina

oxide (AAO) templates

_{spand} ~8%</sup> **Carlie Ester (9TBAE)

Prods**

• 200 nm x 60 µm nanorods

– single crystal (TEM)

– self-organize in anodic alumina

oxide (AAO) templates

• Expand ~8%

• [4+4] photodimerization (365 nm) **Carlier (9TBAE)**
 • 200 nm x 60 µm nanorods

• single crystal (TEM)

• self-organize in anodic alumina

oxide (AAO) templates

• Expand ~8%

• [4+4] photodimerization (365 nm)

- -
	- oxide (AAO) templates
-
-

Solution-grown dimer (SGD)

9-Tertbutyl-Anthracene Ester (9TBAE) Nanorods

in solid-state ? unknown molecular conformation and crystal packing

Photoresponse of Bulk Crystals

 $single\ crystals \sim 0.5\ mm$ under irradiation

 $\lambda = 365$ nm

Challenge to NMR **Crystallography**

Identify and characterize the crystal structure of the metastable solid-state reacted dimer and provide a rationale for the photomechanical response

NMR Crystallography

Requirements:

NMR Crystallography of 9TBAE Nanorods **NMR Crystallography of 97**
• Structure of the SSRD
• Powder X-ray
• Solid-state NMR MR Crystallography of

tructure of the SSRD
- Powder X-ray
- Solid-state NMR
spectroscopy

- -
	- spectroscopy
	- chemistry
- - and product unit cells with respect to the nanorod axis

Powder X-Ray Diffraction of Solid-State Reacted Dimer Powder X-Ray

Solid-State Re

• Powder X-ray

• Pawley refinement

• Pawley refinement Powder X-Ray D

Solid-State Read

Nowder X-ray

Pawley refinement

- Indexing

- Introduce and optimize Powder X-Ray D

Solid-State Read

owder X-ray

- Indexing

- Pawley refinement

- Introduce and optimize

molecular geometry and

nacking Powder X-Ray D

Solid-State Read

owder X-ray

- Indexing

- Pawley refinement

- Introduce and optimize

molecular geometry and

- Rietveld refinement **POWDET X-RAY D

Solid-State Read

Aller Read

Develops and optimize

Pawley refinement

- Introduce and optimize

molecular geometry and

packing

- Rietveld refinement

- Quantum Espresso solid-

state DFT optimization
 Diffraction of
acted Dimer
• Suite of programs
within Materials Studio**

-
-
- molecular geometry and packing
-
- state DFT optimization
- (weighted residuals)

within Materials Studio

Powder X-Ray Diffraction of Solid-State Reacted Dimer Powder X-Ray

Solid-State Re

• Powder X-ray

– Indexing

– Pawley refinement Powder X-Ray Di

Solid-State Read

All the Marketing

Discriming the Marketin Care of the Marketin

Discriminant Care **Powder X-Ray Di

Solid-State Read

Allow Solid-State Read

Develop Read

Pawley refinement

- Introduce and optimize

molecular geometry and

packing** Powder X-Ray Di

Solid-State Read

November X-ray

- Indexing

- Pawley refinement

- Introduce and optimize

molecular geometry and

- Rietveld refinement **POWDET X-RAY DI

Solid-State Read

Alle Read

Develops and the property and

Pawley refinement

- Introduce and optimize

molecular geometry and

Packing

- Rietveld refinement

- Quantum Espresso solid-

state DFT optimi**

-
-
- molecular geometry and packing **Solid-State Read

Solid-State Read

A Pawley refinement**

- Introduce and optimize

molecular geometry and

- Rietveld refinement

- Quantum Espresso solid-

state DFT optimization

- Final ranking by R_{wp} stru

(weight owder X-ray

- Indexing

- Pawley refinement

- Introduce and optimize

molecular geometry and

packing

- Rietveld refinement

- Quantum Espresso solid-

state DFT optimization

- Final ranking by R_{wp} stru

(weighted r
-
-
- (weighted residuals)

state DFT optimization • Identify eight candidate crystal structures for SSRD consistent with system

8 Candidate Crystals/2 Groupings

Equivalent unit cell dimensions

Differ in symmetry of the molecular packing and ester torsion

Classify into 2 groups of structures

Progress. But can we distinguish these sets?

NMR Crystallography

Requirements:

-
-

Requirements:

-
-
-
- i. Powder diffraction / Rietveld
- i. Powder diffraction / Rietveld
ii. Crystal structure/polymorph prediction
iii. Ab Initio Random Structure Searching
(AIRSS) i. Powder diffraction / Rietveld

ii. Crystal structure/polymorph prediction

iii. Ab Initio Random Structure Searching

(AIRSS)

iv. Powder NMR structural restraints, e.g., (AIRSS)
- i. Powder diffraction / Rietveld

ii. Crystal structure/polymorph prediction

iii. Ab Initio Random Structure Searching

(AIRSS)

iv. Powder NMR structural restraints, e.g.,

NMR spin diffusion, through-bond

connectivity NMR spin diffusion, through-bond connectivity … i. Powder diffraction / Rietveld

ii. Crystal structure/polymorph prediction

iii. Ab Initio Random Structure Searching

(AIRSS)

iv. Powder NMR structural restraints, e.g

NMR spin diffusion, through-bond

connectivity ..

See the many approaches in Harris, Wasylishen, and Duer

Requirements:

-
-
-
- i. Powder diffraction / Rietveld
- i. Powder diffraction / Rietveld
ii. Crystal structure/polymorph prediction
iii. Ab Initio Random Structure Searching
(AIRSS) i. Powder diffraction / Rietveld

ii. Crystal structure/polymorph prediction

iii. Ab Initio Random Structure Searching

(AIRSS)

iv. Powder NMR structural restraints, e.g., (AIRSS)
- i. Powder diffraction / Rietveld

ii. Crystal structure/polymorph prediction

iii. Ab Initio Random Structure Searching

(AIRSS)

iv. Powder NMR structural restraints, e.g.,

NMR spin diffusion, through-bond

connectivity NMR spin diffusion, through-bond connectivity … i. Powder diffraction / Rietveld

ii. Crystal structure/polymorph prediction

iii. Ab Initio Random Structure Searching

(AIRSS)

iv. Powder NMR structural restraints, e.g

NMR spin diffusion, through-bond

connectivity ..

See the many approaches in Harris, Wasylishen, and Duer

… and Bryce (2024) Edited by David L. Bryce

8 Candidate Crystals/2 Groupings

Equivalent unit cell dimensions

Differ in symmetry of the molecular packing and ester torsion

Classify into 2 groups of structures

Progress. But can we distinguish these sets?

NMR Crystallography of 9TBAE Nanorods **NMR Crystallography of 9T**
• Structure of the SSRD
• Powder X-ray
|- Solid-state NMR MR Crystallography of

tructure of the SSRD
- Powder X-ray
- Solid-state NMR
spectroscopy MR Crystallography of

tructure of the SSRD

- Powder X-ray

- Solid-state NMR

spectroscopy

- Computational chemistry MR Crystallography of

tructure of the SSRD

- Powder X-ray

- Solid-state NMR

spectroscopy

- Computational chemistry

se the chemical shifts as

straints in a first-principles

- -
	- spectroscopy
	-
- **NMR Crystallography**

 Structure of the SSRD

 Powder X-ray

 Solid-state NMR

 pectroscopy

 Computational chemistry

 Use the chemical shifts as

restraints in a first-principles

screening to sort out the restraints in a first-principles screening to sort out the candidate structures

SSNMR of 9TBAE Nanorods

SSRD: Experimental NMR Shifts

NMR Crystallography

Requirements:

-
-
-

Selecting Crystal Structures using First-Principles Chemical Shifts • Selecting Crystal Structures using First-
• Principles Chemical Shifts
• Use the chemical shifts as restraints in a first-principles screening
• 8 candidate crystal structures: calculate shifts for each and rank by
• agr • Selecting Crystal Structures using First-
• Principles Chemical Shifts
• Use the chemical shifts as restraints in a first-principles screening
• 8 candidate crystal structures: calculate shifts for each and rank by
• Req • Selecting Crystal Structures using First-
• Principles Chemical Shifts
• Use the chemical shifts as restraints in a first-principles screening
• 8 candidate crystal structures: calculate shifts for each and rank by
• agr **Selecting Crystal Structures L**
Principles Chemical Structures
• Use the chemical shifts as restraints in a first-principle
• 8 candidate crystal structures: calculate shifts for e
agreement with experiment
• Requires

-
- agreement with experiment
- shift calculations for solid-state structures
-

Two Essential Components of NMRX

First principles computational chemistry (DFT)

$$
H = \sum_{i} \frac{(p_i + eA)^2}{2m_e} + V
$$
\n
$$
\chi^2 = \frac{1}{N} \sum_{i} \frac{(\delta_i^{\text{model}} - \delta_i^{\text{exp}})^2}{\sigma_i^2}
$$
\nQuantitative statistics

2

 $\overline{}$

 σ

First Principles Computational Chemistry

The molecular Hamiltonian

First Principles Computational Chemistry	
The molecular Hamiltonian	
$H = -\sum_{A}^{nuc} \frac{1}{2M_A} \nabla_A^2 - \sum_{i}^{elec} \frac{1}{2m_i} \nabla_i^2 - \sum_{A}^{ne} \sum_{i}^{elec} \frac{Z_A}{r_{ia}} + \sum_{i}^{elec} \sum_{j>i}^{elec} \frac{1}{r_{ij}} + \sum_{A}^{nec} \sum_{B>A}^{nec} \frac{Z_A Z_B}{R_{AB}}$	
• Kinetic energy for each nucleus	In a magnetic field:
• Kinetic energy for each electron	$p_i \rightarrow p_i + eA$
• Attraction of each electron to each nucleus	the repulsion between each pair of electrons
• Repulsion between each pair of nuclei	
Solving the Schrödinger equation gives all of the molecular properties:	
• energy, dipole moment, chemical shifts ...	
• dapted from lecture notes by Prof. Greg Bern, UCR	

-
-
-
-
-

energy, dipole moment, chemical shifts …

* Adapted from lecture notes by Prof. Greg Beran, UCR

In a magnetic field:

 $p_i \rightarrow p_i + eA$

First Principles Computational Chemistry

The Schrödinger equation with the molecular Hamiltonian is too complicated to solve exactly

Approximate approach:

-
- First Principles Computational Chemistry

The Schrödinger equation with the molecular Hamiltonian is too complicated to

solve exactly

1. Born-Oppenheimer approximation treat nuclei as fixed

2. Solve the electronic par First Principles Computational Chemistry

The Schrödinger equation with the molecular Hamiltonian is too complicated to

solve exactly

Approximate approach:

1. Born-Oppenheimer approximation – treat nuclei as fixed

2. S perturbation theory **FIFST Principles Computa**

Positive exactly

proximate approach:

Born-Oppenheimer approximation – treat nu

Solve the electronic part of the Schrödinger

perturbation theory

a. Wavefunction methods

b. Density functiona Exercise exactly

by Schrödinger equation with the molecular Harve

by exactly

by proximation – treat nucl

Solve the electronic part of the Schrödinger experturbation

theory

a. Wavefunction methods

b. Density functio
	-
	-

$$
H\psi(r,R)=E\psi(r,R)
$$

* Adapted from lecture notes by Prof. Greg Beran, UCR

Wavefunction Methods

* Adapted from lecture notes by Prof. Greg Beran, UCR

- All of these methods seek to solve the electronic
part of the Schrödinger equation
• Hartree-Fock (HF) is the simplest method, but not part of the Schrödinger equation
- All of these methods seek to solve the electronic
part of the Schrödinger equation
• Hartree-Fock (HF) is the simplest method, but not
very accurate
• Mean field approximation, ignores electron
secondation $w(x, \zeta) = a(x) a$ very accurate II of these methods seek to solve the electronic
art of the Schrödinger equation
lartree-Fock (HF) is the simplest method, but not
ery accurate
- Mean field approximation, ignores electron
correlation $\psi(r_1, r_2) = \varphi(r_1)\var$ • All of these methods seek to solve the electronic
part of the Schrödinger equation

• Hartree-Fock (HF) is the simplest method, but not

very accurate

• Mean field approximation, ignores electron

correlation $\psi(r_i, r_2$
	- correlation $\psi(r_1, r_2) = \varphi(r_1) \varphi(r_2)$
- expanded bases

- chemistry. Practical upper limit of accuracy.
- methods.

Density Functional Theory

* Adapted from lecture notes by Prof. Greg Beran, UCR

- **http://wombilder/index.profiled/index**
• DFT has HF-like cost, but significantly better
• Hohenberg-Kohn Theorem accuracy
-
- **Crional Theory
• DFT has HF-like cost, but significantly better
• Hohenberg-Kohn Theorem
• There exists a 1:1 mapping between electron
• density** $\rho(r)$ **and energy: E[** $\rho(r)$ **]** tional Theory
FT has HF-like cost, but significantly better
ccuracy
ohenberg-Kohn Theorem
- There exists a 1:1 mapping between electron
density $\rho(r)$ and energy: E[$\rho(r)$]
- Problem: we don't know what the mapping is density $p(r)$ and energy: $E[p(r)]$ tional Theory
FT has HF-like cost, but significantly better
ccuracy
ohenberg-Kohn Theorem
- There exists a 1:1 mapping between electron
density $\rho(r)$ and energy: E[$\rho(r)$]
- Problem: we don't know what the mapping is
ohn-
	-
- **DFT has HF-like cost, but significantly better**

 DFT has HF-like cost, but significantly better

 Hohenberg-Kohn Theorem

 There exists a 1:1 mapping between electron

density $\rho(r)$ and energy: E[$\rho(r)$]

 Problem approximate density functionals
	-
- **IIONAI I NEOITY**

FT has HF-like cost, but significantly better

ccuracy

ohenberg-Kohn Theorem

 There exists a 1:1 mapping between electron

density $\rho(r)$ and energy: E[$\rho(r)$]

 Problem: we don't know what the mappi • DFT has HF-like cost, but significantly better

• Colombianced Colombian Chernal C van der Waals dispersion, so should always augment with a dispersion correction onenberg-Konn Theorem

- There exists a 1:1 mapping between electron

density $\rho(r)$ and energy: E[$\rho(r)$]

- Problem: we don't know what the mapping is

ohn-Sham DFT provides a workable solution for

pproximate density fu
	- Many-body Dispersion (MBD) …

Basis Sets

Gaussian bases frequently used in molecular problems express each MO, $|\varphi\rangle$, as a linear combination of AOs, $|\mathcal{X}_n\rangle$

$$
|\varphi\rangle = c_1 |\chi_1\rangle + c_2 |\chi_2\rangle + c_3 |\chi_3\rangle + ... + c_n |\chi_n\rangle
$$

Each atomic orbital $\chi(r) = f(r) e^{-a|r|}$ represented by a sum of Gaussian functions $g(r)e^{-ar^2}$ $\chi(r)$ = $f(r)e^{-a|r|}$

* Adapted from lecture notes by Prof. Greg Beran, UCR
Gaussian Basis Set Primer

* Adapted from lecture notes by Prof. Greg Beran, UCR

Solid-State Computational Chemistry • Plane-wave methods **Manutional Chemistry

Mane-wave methods

- Plane-wave basis periodic on the crystal lattice
- CASTEP, Quantum-Espresso, CPMD
- Expensive to use hybrid functionals IMPUTATIONAL Chemistry**

Mane-wave methods

- Plane-wave basis periodic on the crystal lattice

- CASTEP, Quantum-Espresso, CPMD

- Expensive to use hybrid functionals

... but Dracinsky, Unzueta, and Beran have a nice mputational Chemistry

Mane-wave methods

- Plane-wave basis periodic on the crystal lattice

- CASTEP, Quantum-Espresso, CPMD

- Expensive to use hybrid functionals

... but Dracinsky, Unzueta, and Beran have a nice

solu • Plane-wave methods
• Plane-wave basis periodic on the crystal lattice
• CASTEP, Quantum-Espresso, CPMD
• Expensive to use hybrid functionals
• but Dracinsky, Unzueta, and Beran have a nice
• solution to this (*PCCP* 201

- -
	-
	-
- **putational Chemistry**

Pe-wave methods

Plane-wave basis periodic on the crystal lattice

CASTEP, Quantum-Espresso, CPMD

Expensive to use hybrid functionals

... but Dracinsky, Unzueta, and Beran have a nice

solution to solution to this (PCCP 2019) **IMPUTATIONAI CHEMISTY**

Iane-wave methods

- Plane-wave basis periodic on the crystal lattice

- CASTEP, Quantum-Espresso, CPMD

- Expensive to use hybrid functionals

... but Dracinsky, Unzueta, and Beran have a nice

so lane-wave methods

- Plane-wave basis periodic on the crystal lattice

- CASTEP, Quantum-Espresso, CPMD

- Expensive to use hybrid functionals

... but Dracinsky, Unzueta, and Beran have a nice

solution to this (*PCCP* 20 lane-wave methods

- Plane-wave basis periodic on the crystal latt

- CASTEP, Quantum-Espresso, CPMD

- Expensive to use hybrid functionals

... but Dracinsky, Unzueta, and Beran have a nice

solution to this (*PCCP* 2019) - Plane-wave basis periodic on the crys

- CASTEP, Quantum-Espresso, CPMD

- Expensive to use hybrid functionals

... but Dracinsky, Unzueta, and Beran have

solution to this (*PCCP* 2019)

luster/Fragment-based approaches
- -
	-
	-
	-

Hybrid Many-Body Interaction Fragment Approach **Ody Interaction
Approach
• Developed by Greg Beran (UCR)
• Efficient, fragment-based approach
• Intrinsically parallelizable Calculary School School Approach**
• Developed by Greg Beran (UCR)
• Efficient, fragment-based approach
• Intrinsically parallelizable
• Builds large clusters (30+ Å) to mimic **Ody Interaction
Approach
• Developed by Greg Beran (UCR)
• Efficient, fragment-based approach
• Intrinsically parallelizable
• Builds large clusters (30+ Å) to mimic
the solid-state** • **Approach**
• Developed by Greg Beran (UCR)
• Efficient, fragment-based approach
• Intrinsically parallelizable
• Builds large clusters (30+ Å) to mimic
• the solid-state
• Atom-centered Gaussian orbitals allows • **Approach**
• Developed by Greg Beran (UCR)
• Efficient, fragment-based approach
• Intrinsically parallelizable
• Builds large clusters (30+ Å) to mimic
the solid-state
• Atom-centered Gaussian orbitals allows
• DFT with

References

Hartman & Beran, JCTC 10, 4682 (2014) Hartman, Monaco, Schatschneider, Beran. JCP 143, 102809 (2015) Hartman, Kudla, Day, Mueller, Beran, PCCP 18, 21686 (2016) Harman, Neubauer, Caulkins, Mueller, Beran, JBNMR 62, 327 (2016) Hartman, Balaji, Beran, JCTC 13, 6043 (2017) Dracinsky, Unzueta, Beran, PCCP 21, 14992 (2019)

-
-
-
- the solid-state
- DFT with hybrid functionals **Approach**

• Developed by Greg Beran (UCR)

• Efficient, fragment-based approach

• Intrinsically parallelizable

• Builds large clusters (30+ Å) to mimic

the solid-state

• Atom-centered Gaussian orbitals allows

DFT wi
-

Benchmarks

$$
\delta_i = m\sigma_i + \sigma_{ref}
$$

- **Benchmarks**
 $\delta_i = m\sigma_i + \sigma_{ref}$

 Linear rescaling parameters are constants

determined from benchmarks, not

adjustable parameters

 Allow absolute, not just relative, determined from benchmarks, not adjustable parameters **Benchmarks**
 $\delta_i = m\sigma_i + \sigma_{ref}$

• Linear rescaling parameters are constants

determined from benchmarks, not

adjustable parameters

• Allow absolute, not just relative,

comparison of theory and experiment

¹³C isotrop
- comparison of theory and experiment

¹³C isotropic shifts

 $\ddot{\text{OH}}$

 $CH₂OH$ $-$ CH₂OH

 $CH₂OH$

Benchmarks

$$
\delta_i = m\sigma_i + \sigma_{\text{ref}}
$$

- **Benchmarks**
 $\delta_i = m\sigma_i + \sigma_{ref}$

 Linear rescaling parameters are constants

determined from benchmarks, not

adjustable parameters

 Allow absolute, not just relative, determined from benchmarks, not adjustable parameters **Benchmarks**
 $\delta_i = m\sigma_i + \sigma_{ref}$

• Linear rescaling parameters are constants

determined from benchmarks, not

adjustable parameters

• Allow absolute, not just relative,

comparison of theory and experiment

¹³C isotrop
- comparison of theory and experiment

¹³C isotropic shifts

References:

Hybrids Hartman & Beran, JCTC 10, 4682 (2014) Hartman, Monaco, Schatschneider, & Beran. JCP 143, 102809 (2015) Hartman, Kudla, Day, Mueller, Beran, PCCP 18, 21686 (2016)

Linear Rescaling

**Choice of Functional

Alternationals do** $-\sqrt{2}$ better than

the non-hybrids
 \cdot No significant differences within each

class **Choice of Functional

• Hybrid functionals do** \sim **V2 better than

• No significant differences within each

• Class**

- the non-hybrids
- class

¹³C isotropic shifts

NMR Crystallography

Requirements:

-
-
-
- Francis:

Accurate chemical shift prediction

4. Accurate chemical shift prediction

4. Accurate chemical shift prediction

Model Ranking and Selection

$$
\chi_r^2 = \frac{1}{N} \sum_i \frac{\left(\delta_i^{\text{model}} - \delta_i^{\text{exp}}\right)^2}{\sigma_i^2}
$$

Quantitative Statistics:

-
- structure?

Statistical Monte Carlo Simulations

"Offered the choice between mastery of a five-foot shelf of analytical statistics books and middling ability at performing statistical Monte Carlo simulations, we would surely choose to have the latter skill."

Press, Teukolsky, Vetterling, and Flannery, Numerical Recipes in C

The Normal Distribution

The Reduced-*χ*² Distribution

Residuals in Benchmark Studies are Normally Distributed

The Residuals
• The residuals in the test sets are
normally distributed normally distributed

Model Selection in NMR Crystallography

Model Selection in NMR Crystallography
\n
$$
\chi_r^2 = \frac{1}{N} \sum_{i} \frac{(\delta_i^{\text{model}} - \delta_i^{\text{exp}})^2}{\sigma_i^2}
$$
\n
$$
\chi_r^2 = \frac{1}{N} \sum_{i} \frac{(\delta_i^{\text{model}} - \delta_i^{\text{exp}})^2}{\sigma_i^2}
$$
\n
$$
\text{Rank models based on their agreement with experimental data using the red-}\chi^2 \text{ if the residuals are normally distributed (and they are), then the above figure of merit is reduced, and only compare models to each other, but can determine if the model is consistent with the data in an absolute sense.
$$

estimated error from benchmark studies

-
- reduce chi-squared distributed
- consistent with the data in an absolute sense

Chi-Squared Goodness-of-Fit Test

2

$$
f_{x_{\text{red}}^2}(\text{dof} = 10; \chi_{\text{red}}^2) \qquad \chi_r^2 = \frac{1}{N} \sum_i \frac{1}{N}
$$

Example:
experin
a correct
If a moot
at the 9
reduced - χ^2
95% co

$$
\begin{array}{l}\n\epsilon_r = N \leftarrow \\
N \leftarrow \\
\text{Example: If model has predictions for 10}\n\\ \text{experimental shifts, then 95 out of 100 times,}\n\\ \text{a correct model will have red-}\chi^2 < 1.83.\n\end{array}
$$

 $\left(\delta_i^{\text{model}}-\delta_i^{\text{exp}}\right)$

model $\int \csc^2 x$ exp \int^2

 $\overline{}$

 $\delta_i^{\text{model}} - \delta_i^{\text{ex}}$

2

 $1 \nabla \left(\partial_i^{\text{model}} - \partial_i^{\text{ex}} \right)$

If a model has red- χ^2 >1.83, it can be rejected at the 95% confidence level

95% confidence intervals depend on the degrees-of-freedom and can be obtained from statistical software or tables

Benchmark for Structure Selection

From a comprehensive set of candidate structures, the identification of (i) a single structure or (ii) a closely related ensemble of structures that satisfy the 95% confidence limits of the red- χ^2 statistic

Structure Selection

Data from Salager *et al*, JACS 132, 2564-2566 (2010) 95% CI, red- χ^2 <1.64 (16 dof)

Model Probabilities

- But even when only one model satisfies the 95% confidence limits, this does not mean that there is a 95% chance that it is the correct, experimental structure! But even when only one model satisfies
the 95% confidence limits, this does
not mean that there is a 95% chance
that it is the correct, experimental
structure!
To assign model probabilities, we need
Bayesian analysis
• Eng But even when only one model satisfies

the 95% confidence limits, this does

not mean that there is a 95% chance

that it is the correct, experimental

structure!

To assign model probabilities, we need

Bayesian analysi
- To assign model probabilities, we need Bayesian analysis
-
-

Bayes Theorem

Bayes Theorem

a, given the model: model prior probab

(M|d`) = $\frac{P(d^+|M)P(M)}{\sum_{M'} P(d^+|M')P(M')}$ **S Theorem**

nodel: model prior probability

(a matter of life or death)
 $\frac{d^{\dagger} |M| P(M)}{(d^{\dagger} |M') P(M')}$ * * * | | | M $P(d^* | M) P(M)$ $P(M |$ $P\big(\mathsf{d}^*\,|\,M'\big)P\big(M'\big)$ $\overline{}$ $=$ $\overline{\sum P\big(\mathsf{d}^*\,|\,M'\big)P\big(M'\big)}$ \mathbf{d}^{\dagger} \mathbf{d}^{\dagger} \mathbf{d}^* probability of the data, given the model: model prior probability the likelihood function (what we typically know) (a matter of life or death)

probability of a model, given the data (what we actually want to know)

Engel et al., PCCP 21, 23385 (2019)

Prior Probabilities

Prior Probabilities
Professorial hyperfixation dementia (PHD)
• PHD Effects 1 in 10,000 $P(D) = 0.0001$ $P(\bar{D}) = 0.998$
• PHD Test sensitivity: 99% $P(+|D) = 0.99$ $P(+|\bar{D}) = 0.0$ Prior Probat

Professorial hyperfixation dementia (PHD)

• PHD Effects 1 in 10,000 P(D) = 0.

• PHD Test sensitivity: 99% P(+|D) = **Prior Probabilities**

Professorial hyperfixation dementia (PHD)

• PHD Effects 1 in 10,000 $P(D) = 0.0001 P(\bar{D}) = 0.0001 P(\bar{D}) = 0.99$

• PHD Test sensitivity: 99% $P(+|D) = 0.99 P(+|\bar{D}) = 0.99 P(+|\bar{D}) = 0.99 P(+|\bar{D}) = 0.99 P(+|\bar{D}) =$ $P(D) = 0.0001$ $P(\overline{D}) = 0.9999$ $P(+|D) = 0.99$ $P(+|\overline{D}) = 0.01$ L Prior prob Likelihood

Q: You test positive, what is the probability that you have PHD?

Prior Probabilities			
hyperfixation, a myperrization, a s t in 10,000	$P(D) = 0.0001$	$P(D) = 0.9999$	$Prior \, prob$
density: 99%	$P(+ D) = 0.99$	$P(+ D) = 0.01$	$Likelihood$
positive, what is the probability that you have PHD?			
$P(D +)=\frac{P(+ D)P(D)}{P(+ D)P(D)+P(+ D)P(D)}$	$\frac{(0.99)(0.0001)}{(0.99)(0.0001)+(0.01)(0.9999)}$	Good. So just because you have a positive PHD test, your life isn't ruing	

Good. So just because you have a positive PHD test, your life isn't ruined

Bayesian Approaches Traditional Bayesian analysis **Bayesian Approachlight (Bayesian analysis**
• Engel et al., *PCCP* 21, 23385 (2019)
• Findler Bayesian analysis **Bayesian Approaches**

uniformal Bayesian analysis $P(M|\mathbf{d}^*) = \frac{P(\mathbf{d}^*|M)P(M)}{\sum_{M'} P(\mathbf{d}^*|M')P(M')}$

Engel *et al., PCCP* 21, 23385 (2019) $\frac{P(\mathbf{d}^*|M)P(M')}{M'}$

rchical Bayesian analysis empirically der
 $(M|\mathbf{d}^*) =$ In Approaches
 $P(M|\mathbf{d}^t) = \frac{P(\mathbf{d}^t | M)P(M)}{\sum_{M'} P(\mathbf{d}^t | M')P(M') }$

empirically derived
 $\mathbf{d}^t | M, s)P(M|s)P(s)ds$
 $(\mathbf{d}^t | M', s)P(M'|s)P(s)ds$ The UC Model
 $\mathbf{d}^t (2024)$ * \mathbf{F}^* = $\mathbf{D}(\mathbf{M} \mathbf{S} | \mathbf{A}^*)$ * $|M, s)P(M|s)$ $| d^{\dagger}) = \bigcap P\bigl(M, \texttt{S} | d^{\dagger} \bigr)$ $|M', s| P(M' | s)$ M $P(d^* | M, s)P(M | s)P(s)ds$ $P(M | d^*) = \int P(M, s | d^*) ds$ $P(d^* | M', s) P(M' | s) P(s) ds$ $\overline{}$ $=\int P(M,s\,|\,d^*)ds = \frac{1}{2\pi}$ $\overline{P(S)P(M')S}$ \int $\int P(M, s | d^*) ds = \frac{J}{\sum_{i} \int$ \mathbf{d}^{\dagger} $\textsf{d}^*\big)$ = $\big\lceil P\big(M,\textsf{s} \,|\, \textsf{d}^*\big)$ \mathbf{d}^{\dagger} Approaches

(*M*|**d**^{*}) = $\frac{P(d^T|M)P(M)}{\sum_{M'} P(d^T|M')P(M')}$

(19) aches
 $\frac{d^{\dagger} |M|P(M)}{(d^{\dagger} |M'|P(M'))}$

empirically derived * * * | | | M $P(d^* | M) P(M)$ $P(M |$ $P\big(\mathsf{d}^*\,|\,M'\big)P\big(M'\big)$ $\overline{}$ $=$ $\overline{\sum P\big(\mathsf{d}^*\,|\,M'\big)P\big(M'\big)}$ \mathbf{d}^* \mathbf{d}^{\dagger} \mathbf{d}^{\dagger} Hierarchical Bayesian analysis aditional Bayesian analysis $P(M|\mathbf{d}^*) = \frac{P(\mathbf{d}^*|M)}{\sum_{M'} P(\mathbf{d}^*|A)}$

• Engel et al., *PCCP* 21, 23385 (2019) $\frac{P(\mathbf{d}^*|M)}{\sum_{M'} P(\mathbf{d}^*|A)}$
 $= \frac{P(M|\mathbf{d}^*)}{P(M|\mathbf{d}^*)} = \int P(M, s|\mathbf{d}^*) ds = \frac{\int P(\mathbf{d}^*|M, s)P(M|s)P(s)}$ uniform empirically derived The UC Model

… or we could use statistical Monte Carlo analysis

A Game of Model Selection

Model 1: the correct experimental structure

4 Game of Model Selection
Model 1: the correct experimental structure
• In the limit of perfect theory, its first-principles predicted properties $\mathbf{d}^{M1} = \{d_1^{M1}, d_2^{M2}, \ldots, d_n^{M2}\}$
Model 2: An incorrect model are in exact agreement with experiment $\mathbf{d}^* = \{\boldsymbol{d}_1^*, \boldsymbol{d}_2^*, ..., \boldsymbol{d}_n^*\}$ $\mathbf{d}^{M1}=\left\{ \bm{d}_{1}^{M1},\bm{d}_{2}^{M1},\ldots,\bm{d}_{n}^{M1}\right\}$

Model 2: An incorrect model

4 Came of Model Selection

Model 1: the correct experimental structure

• In the limit of perfect theory, its first-principles predicted properties $\mathbf{d}^{u_1} = \{d_i^{u_1}, d_i\}$

Model 2: An incorrect model

• In the li deviate systematically from experiment by the set of differentials: $\Delta\mathbf{Y}=\left\{\Delta\mathsf{Y}_1$, $\Delta\mathsf{Y}_2$, …, $\Delta\mathsf{Y}_n\right\}$ $\mathbf{d}^{M2} = \left\{ \bm{d}_{1}^{M2}, \bm{d}_{2}^{M2}, ..., \bm{d}_{n}^{M2} \right\}$

Now reintroduce variable uncertainty into the predictions and ask: if the model with the smaller red- χ^2 is always selected, what is the probability that each model will be chosen?

Note: assuming all the error is in the predictions, not the experimental data. This can be relaxed.

Statistical Monte Carlo Simulations **Monte Carlo Simulation**
Assumptions:
 $(x \sim N[0, \sigma^2])$ 1. predications are norm
 $\sim N[\Delta Y, \sigma^2]$ distributed about 0 are
 $(s\sigma)^2$], σ^2] = $N[0, (s^2 + 1)\sigma^2]$

2. ΔY also unknown

Assumptions:

 $d^{M1} - d^* = \left\{ X_1, X_2, ..., X_n \right\}, \quad X \sim N \left[0, \sigma^2 \right]$ $d^{M2} - d^* = \left\{ Y_1, Y_2, ..., Y_n \right\}, \quad Y \sim N \left[\Delta Y, \sigma^2 \right]$

1. predications are normally distributed about 0 and ΔY

$$
Y \sim N\left[\Delta Y, \sigma^2\right] = N\left[N\left[0, \left(s\sigma\right)^2\right], \sigma^2\right] = N\left[0, \left(s^2 + 1\right)\sigma^2\right]
$$

2. ΔY also unknown, so pick from \overrightarrow{SO} a second normal distribution with standard deviation \bm{s} $\bm{\sigma}$

A Game of Model Selection

Data from Salager et al, JACS 132, 2564-2566 (2010)

Assumptions:

- 1. predications are normally distributed about 0 and ΔY
- 2. ΔY also unknown, so pick from a second normal distribution with standard deviation s σ
- 3. s is also unknown, so pick from a third distribution in which the probability of models increases linearly with s

This corresponds to candidate models being uniformly distributed with respect to red- x^2 values, as seen experimentally: the "Uniform Chi-Squared (UC) Model"

A Game of Model Selection \Box 2. **A Game of Model Selection**

2. Pick s from a distribution with linearly increasing probability

2. Pick n samples of X for model 1 and calculate: $\frac{x_{\text{med,ML}}^2 = \frac{1}{n} \sum_{i=1}^{n} \frac{X_i^2}{\sigma^2}}{x_{\text{med,ML}}^2 = \frac{1}{n} \sum_{i=1$

-
-
-
- 3. Pick n samples of Y for model 2 and calculate:

Best-fit = Model 2 and calculate:

3. Pick n samples of X for model 1 and calculate:

4. Assign best-fit structure based on lower red- χ^2

Best-fit = Model 1, correct 4. Assign best-fit = Model 2, incorrect assignment made
Best-fit = Model 2, incorre **A Game of Model Selection**

mulation for 2 models with *n* chemical shifts measured:

s from a distribution with linearly increasing probability

or *n* samples of *X* for model 1 and calculate:
 $x_{\text{total}}^2 = \frac{1}{n} \sum_{i=1$ mulation for 2 models with *n* chemical shifts measured:

So from a distribution with linearly increasing probability

It is from a distribution with linearly increasing probability

It is amples of X for model 1 and calc Carlo Simulation for 2 models with *n* chemical shifts measured:

1. Pick s from a distribution with linearly increasing probability

2. Pick *n* samples of *X* for model 1 and calculate:
 $\chi^2_{\text{red,ML}} = \frac{1}{n} \sum_{i=1}^n \frac$ Monte Carlo Simulation for 2 models with *n* chemical shifts measured:

1. Pick s from a distribution with linearly increasing probability

2. Pick *n* samples of *X* for model 1 and calculate:

3. Pick *n* samples of *Y*
	-

$$
\textbf{\textit{R}} = \chi^2_{\rm red, Alt} \big/ \chi^2_{\rm red, BF} \geq 1
$$

$$
\chi^{2}_{\text{red,M1}} = \frac{1}{n} \sum_{i=1}^{n} \frac{X_{i}^{2}}{\sigma^{2}}
$$

$$
\chi^{2}_{\text{red,M2}} = \frac{1}{n} \sum_{i=1}^{n} \frac{Y_{i}^{2}}{\sigma^{2}}
$$

UC Model Probabilities

UC Model Probabilities: Example

UC Model Probabilities: Example UC Model Probabilities: Example

github.com/Lenmueller

-
-

red-χ² values

UC Model Probabilities: Example UC Model Probabilities: Example
Binder: mybinder.org/v2/gh/lenmueller/ucm_jupyter/main

github.com/Lenmueller

-
-

```
red-χ<sup>2</sup> values
```

```
UC Model Probabili<br>
Binder: mybinder.org/v2/gh/lenmueller/ucm_jupy<br>
[3]: \# \text{ Calculate } U<br>
github.com/Lenmueller<br>
• Jupyter notebook<br>
• Python script<br>
• Python script<br>
• Python script<br>
• Python script
UC Model Probabili<br>
Binder: mybinder.org/v2/gh/lenmueller/ucm_jup<br>
{}^{[3]}\vdots {}^{# calculate}_{# dof = degree}<br>
github.com/Lenmueller<br>
• Jupyter notebook<br>
• Python script<br>
• 
  Binder: mybinder.org/v2/gh/lenmueller/ucm_upyter/main<br>
\begin{array}{r} \text{[3]}: \begin{array}{r} \text{{{\it R}} \text{ calculate } UCM \text{ probability} \\ \text{{{\it R}} \text{ of } = degrees of freedom} \\ \text{{{\it R}} \text{ of } = degrees of freedom} \\ \text{{{\it P}} \text{ of } = 10} \end{array} \\ \text{Pythen modeler} \end{array} \\ \begin{array}{r} \text{Bythen modeler} \end{array} \\ \begin{array}{r} \text{Bythen modeler} \end{array} \\ \begin
```


UC Model Probabilities

Data from Salager et al, JACS 132, 2564-2566 (2010)

NMR Crystallography **1. A good problem!**
2. Candidate structures
2. Candidate structures **1. Crystallograp**
2. Candidate structures
2. Candidate structures
2. NMR restraints MMR Crystallogi

Requirements:

1. A good problem!

2. Candidate structures

3. NMR restraints

4. Accurate chemical shift predictic

Requirements:

-
-
-
- 1992 1994

1. A good problem!

2. Candidate structures

3. NMR restraints

4. Accurate chemical shift prediction

5. Quantitative ranking of models
- Requirements:

1. A good problem!

2. Candidate structures

3. NMR restraints

4. Accurate chemical shift predictic

5. Quantitative ranking of models

Solid-State Reacted Dimer

-
- Reacted Dimer
• 8 candidate crystal structures
• Calculate shifts for each and rank
using reduced chi-square **Eacted Dimer
• 8 candidate crystal structures
• Calculate shifts for each and rank using reduced chi-square** using reduced chi-square

All Spectroscopic Parameters

All Spectroscopic Parameters

-
- (but others show essentially equivalent results)

Crystal Structure of the Solid-State Reacted Dimer **Fructure of the
• Reacted Dimer
• Success: crystal structure of the solid-state
• Maintains the herringbone packing of the
• Maintains the herringbone packing of the Fructure of the
• Reacted Dimer
• Success: crystal structure of the solid-state
• Maintains the herringbone packing of the
• Maintains the herringbone packing of the
• The t-butyl ester groups are still rotated Fructure of the

Reacted Dimer**

• Success: crystal structure of the solid-state

reacted dimer

• Maintains the herringbone packing of the

anthracene rings

• The t-butyl ester groups are still rotated

inward

• Consis

- reacted dimer FUCTUFE OT THE

• Success: crystal structure of the solid-state

reacted dimer

• Maintains the herringbone packing of the

anthracene rings

• The t-butyl ester groups are still rotated

inward

• Consistent with the *Top* • Success: crystal structure of the solid-state
• Success: crystal structure of the solid-state
• Maintains the herringbone packing of the
• anthracene rings
• The t-butyl ester groups are still rotated
• inward
• Consiste **CECTEU DITTET**

uccess: crystal structure of the solid-state

aacted dimer

laintains the herringbone packing of the

nthracene rings

he t-butyl ester groups are still rotated

ward

onsistent with the *Topochemical Prin*
- anthracene rings
- inward Monomer • The t-butyl ester groups are still rotated
	-
	- - slightly for the dimer unit cell

NMR Crystallography of 9TBAE Nanorods

- VMR Crystallography of
• To determine of mechanism of
• expansion need to orient the
monomer and dimer unit cells expansion need to orient the monomer and dimer unit cells MR Crystallography of 9TBAE Na

To determine of mechanism of

expansion need to orient the

monomer and dimer unit cells

relative to the nanorod axis

Direct NMR measurements on an **WAR Crystallography of 9**
• To determine of mechanism of
expansion need to orient the
monomer and dimer unit cells
relative to the nanorod axis
• Direct NMR measurements on an
ensemble of uniformly oriented
single crystal
- ensemble of uniformly oriented single crystals nanorods in the AAO template

NMR Crystallography of 9TBAE Nanorods

Place in flat coil NMR probe with nanorod long axis along the static magnetic field: one degree of orientation

Single Crystal Solid-State NMR of 9TBAE

Solid-State NMR of Oriented 9TBAE Nanorods

Two-State Single-Crystal to Single-Crystal Reaction

NMR Crystallography: Orienting the Monomer and SSRD Unit Cells **MMR Crystallogram

Monomer and S

• Using the first principles

• Shielding tensor and its

• alignment in the crystal**

shielding tensor and its alignment in the crystal frame, we can predict the spectra as a function of orientation of the unit cells in the magnetic field

TensorView

- TensorView
• A software tool for displaying NMR
• Mathematica and MATLAB versions tensors on molecular models
-

Magn Reson Chem 2019, 57: 211-223 SSNMR 2023, 123: 101849

MATLAB version with Leo Svenningson No MATLAB license required

Spherical Tensors and Rotations

Spherical Tensors and Rotations
• Two ways to treat this are the direct rotation in Cartesian form and the decomposition of the Cartesian tensor into irreducible spherical components that rotate in subgroups of rank 0, 1 decomposition of the Cartesian tensor into irreducible spherical components that rotate in subgroups of rank 0, 1, and 2

Spherical Tensors and Rotations
to treat this are the direct rotation in Cartesian form and the
tion of the Cartesian tensor into irreducible spherical components
n subgroups of rank 0, 1, and 2

$$
A \xrightarrow{R} A'
$$

$$
A' = R A R^{-1} \t a'_{kq} = \sum_{p=-k}^{k} D_{pq}^{(k)} (\Omega_{R^{-1}}) a_{k p}
$$

Mueller, Concepts in Magnetic Resonance A, 38A, 221-235 (2011)
ENC tutorials 2015, 2019 – online at www.enc-conference.org

Mueller, Concepts in Magnetic Resonance A, 38A, 221-235 (2011)

NMR Crystallography: Orienting the Monomer and SSRD Unit Cells **MMR Crystallogram

Monomer and S

• Using the first principles

• Shielding tensor and its

• alignment in the crystal**

shielding tensor and its alignment in the crystal frame, we can predict the spectra as a function of orientation of the unit cells in the magnetic field

Nanorod Expansion

 $\mathbf{r} = u\mathbf{a}_m + v\mathbf{b}_m + w\mathbf{c}_m$ Monomer unit cell axes

Transformed (effective) dimer unit cell axes

 $\mathbf{r}' = u\mathbf{a}'_d + v\mathbf{b}'_d + w\mathbf{c}'_d$

Once aligned in rod frame, can measure microscopic expansion directly from equivalent lattice points

Expansion NMR Alignment: 7.4% Experimental: $8\pm2\%$

Underlying Mechanism

Conclusion

- **CONCIUSION**
• NMR crystallography can establish the atomic-level basis for the macroscopic
• Determines both the unit cells and their orientations relative to the shape change expansion • NMR crystallography can establish the atomic-level basis for the macroscopic expansion
• Determines both the unit cells and their orientations relative to the shape change rod axis
-

Integrative Structural Biology of Enzyme Active Sites with NMR Crystallography

Funding: NIH MIRA

JACS 2016, 138, 15214-15226 ACIE 2016, 55, 1350-1354 PNAS 2022, 119(2) e2109235119 PNAS 2022, 119(4) e2114690119

Tryptophan Synthase **ptophan Synthase**
• 143 kDa, α₂β₂ bi-enzyme complex
• Catalyzes the last two steps in the syn **ptophan Synthase**
• 143 kDa, α₂β₂ bi-enzyme complex
• Catalyzes the last two steps in the synthesis of L-Trp
• β-subunit cofactor: pyridoxal-5'-phophate (PLP) **ptophan Synthase**
• 143 kDa, $\alpha_2\beta_2$ bi-enzyme complex
• Catalyzes the last two steps in the synthesis of
• β -subunit cofactor: pyridoxal-5′-phophate (PLP)

- 143 kDa, $\alpha_2\beta_2$ bi-enzyme complex
-
-

PLP - External Aldimine Form

Protonation States in the Active Site: Mechanism and Inhibition

Refining Active-Site Chemical Structure in Tryptophan Synthase

Challenge to NMR Crystallography: Identify and characterize intermediates, including their protonation states

"Chemically-Rich"

Step 1: X-Ray Crystal Structure

X-Ray Collaborators: Eduardo Hilario (UCR Biochemistry) and Tim Mueser/Tori Drago (U Toledo)

α-Aminoacrylate Crystal Structure

- **a Aminoacrylate**

 Formed by the acid-catalyzed

 Structure shows crystal loss of hydroxide
- α -Aminoacrylate

 Formed by the acid-catalyzed

 Structure shows crystal

 Structure shows crystal

 waters in the active site

adjacent to the substrate C^{β} waters in the active site adjacent to the substrate C^{β} **C-Aminoacrylate**
• Formed by the acid-catalyzed
loss of hydroxide
• Structure shows crystal
waters in the active site
adjacent to the substrate C^{β}
• Tempting to think it could be
the hydroxide!
- the hydroxide!

Step 2: NMR Spectroscopy **Step 2: NMR Spectroscopy**
• Prepare microcrystals of enzyme for solid-state NMR
• Make use of labeled protein, cofactor, and/or substrates

- under analogous conditions as X-ray
- **Step 2: NMR Spectroscopy**
• Prepare microcrystals of enzyme for solid-state NMR
under analogous conditions as X-ray
• Make use of labeled protein, cofactor, and/or substrates
and establish steady-state concentration of in and establish steady-state concentration of intermediates in the catalytically-active crystals

free substrate in mother liquor: solution-state NMR

Chemical Shifts / ppm

Step 3: First-Principles Computational Chemistry • Place the chemistry of the active site in full structural
• Place the chemistry of the active site in full structural
• Cluster model of active site: ~700 atoms
• Select residues with at least 2 atoms within 7 Å of • Computational Chemistry
• Place the chemistry of the active site in full structural
• Cluster model of active site: ~700 atoms
• Select residues with at least 2 atoms within 7 Å of
• Initial hydrogen-only MD scan • Place the chemistry of the active site in full structural
• Cluster model of active site: ~700 atoms
• Select residues with at least 2 atoms within 7 Å of
• substrate/cofactor
• Initial hydrogen-only MD scan
• Fully quan

Benchmarked with Profs Greg Beran and Josh Hartman, UCR
Hartman & Beran, JCTC 10, 4682{4872 (2014)

Hartman & Beran, JCTC 10, 4682{4872 (2014) Hartman, Monaco, Schatschneider, Beran. JCP 143, 102809 (2015) Hartman, Kudla, Day, Mueller, Beran, PCCP 18, 21686 (2016) Harman, Neubauer, Caulkins, Mueller, Beran, JBNMR 62, 327 (2016)

- context
-
- substrate/cofactor
-
- Computational Chemistry
• Place the chemistry of the active site in full structural
• Cluster model of active site: ~700 atoms
• Select residues with at least 2 atoms within 7 Å of
• substrate/cofactor
• Initial hydrogen • Place the chemistry of the active site in full structural
• Cluster model of active site: ~700 atoms
• Select residues with at least 2 atoms within 7 Å of
• substrate/cofactor
• Initial hydrogen-only MD scan
• Fully quan NMR chemical shift calculation using DFT and locallydense basis sets
- Place the chemistry of the active site in full structural
• Cluster model of active site: ~700 atoms
• Select residues with at least 2 atoms within 7 Å of
• substrate/cofactor
• Initial hydrogen-only MD scan
• Fully quan 13C to within 1.5 ppm RMSD 15N to within 4.3 ppm RMSD 17O to within 7.5 ppm RMSD • Frace the chemistry of the active she in full studid and

• Cluster model of active site: ~700 atoms

• Select residues with at least 2 atoms within 7 Å of

• Ully quantum-mechanical geometry optimization and

• Fully qu deter moder of active site. "-7:00 atoms
elect residues with at least 2 atoms within 7 Å of
bstrate/cofactor
tial hydrogen-only MD scan
llly quantum-mechanical geometry optimization and
MR chemical shift calculation using
- priori and benchmarked across test sets
	- predicted shifts with experimental data

Model Rankings

Models

Fast-Exchange Equilibrium

Reactivity and Transition States

Reactivity and Transition States

Water placement and orientation points back to the acid-base catalytic residue and along the reaction coordinate for the formation of the αaminoacrylate intermediate

Positional Uncertainties

- Quantified the positional uncertainties in our structures by adapting the

method for calculating ADP from Hofstetter and Emsley for molecular organic

erystals (*JACS* 2017) to our cluster model approach for enzyme acti method for calculating ADP from Hofstetter and Emsley for molecular organic crystals (JACS 2017) to our cluster model approach for enzyme active sites **Positional Uncertainties**
• Quantified the positional uncertainties in our structures by adapting the
method for calcularing ADP from Hofstetter and Emsley for molecular organic
crystals (JACs 2017) to our cluster model **Positional Uncertainties**
• Quantified the positional uncertainties in our structures by adapting the
method for calculating ADP from Hofsteiter and Emsley for molecular organic
crystals (*JACS* 2017) to our cluster model **Positional Uncertainties**
• Quantified the positional uncertainties in our structures by adapting the
method for calculating ADP from Hofstetter and Emsely for molecular organic
crystals (*JACS* 2017) to our cluster model **Positional Uncertainties**

• Quantified the positional uncertainties in our structures by adapting the

method for calculating ADP from Hofstetter and Emsley for molecular organic

• Use low temperature molecular dynamic
- reasonable perturbed structures and calculate their shifts
-
- restraints at 95% certainty
-

Average positional RMSD

-
-

X-Ray Crystallography **Indicate Size** NMR Crystallography

Positional Uncertainties

Average positional RMSD

-
-
- (yes, this is not a fair comparison!)
- ADP for molecular organics crystals
- ADP may be independent of molecular size

NMR-Assisted Protein Crystallography

-
- **NMR-Assisted Protein**
• Structure and dynamics
• In TS, identifies the active site
• protonation states and tautomeric **NMR-Assisted Protein (**
• Structure and dynamics
• In TS, identifies the active site
protonation states and tautomeric
exchange protonation states and tautomeric exchange **NMR-Assisted Protein Cr**
• Structure and dynamics
• In TS, identifies the active site
protonation states and tautomeric
exchange
• Informs us about transition states
into and out of the aminoacrylate
species
- into and out of the aminoacrylate species

Summary

-
-
-
- **3. NMR restraints: as many as possible**
3. NMR restraints: as many as possible
3. NMR restraints: as many as possible
4. Accurate chemical shift prediction: appropriate level
of theory and basis set 5. Accurate chemical shift prediction: appropriate level

4. Accurate chemical shift prediction: appropriate level

4. Accurate chemical shift prediction: appropriate level

5. Quantitative carking of models: Mente Carlel of theory and basis set 1. Pick a good problem!

2. Candidate structures: comprehensive list

3. NMR restraints: as many as possible

4. Accurate chemical shift prediction: appropriate level

of theory and basis set

5. Quantitative ranking of mo
-