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NMR and Crystallography

• Crystallography 
– the study of crystal structure

– the arrangement of atoms in crystals 

• NMR complements diffraction methods
– long range order vs. short range order/local chemical structure and 

dynamics

• Combination
– chemically-detailed crystal structures

– insight into relationship between structure, dynamics, reactivity, 
and function



First pairing of NMR, X-ray, 
and ab initio comp. chemistry



Outline

•Materials Science:  
Photomechanical Materials

•Structural Biology: 
Enzyme Active Sites

•The Tools of NMR Crystallography by way of two applications …



Along the Way … A Few Helpful 
Tools and (STRONG) Opinions 

• First principles calculations, choice of functional, and a 
priori linear rescaling

• Statistics and the assignment of model probabilities

• Visualizing tensors with TensorView

• Common errors in how spherical tensor rotations are 
applied
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•Materials Science:  
Photomechanical 
Materials

•Structural Biology: 
Enzyme Active Sites
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Photomechanical Materials
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• Use photochemical reactions to 
turn photons into mechanical work

• Goal:  atomic-level basis for the 
macroscopic response



9-Tertbutyl-Anthracene Ester (9TBAE) 
Nanorods

• 200 nm x 60 μm nanorods 

- single crystal (TEM)

- self-organize in anodic alumina 
oxide (AAO) templates 

• Expand ~8% 

• [4+4] photodimerization (365 nm)
Image: Bae et al, 
RSC Adv 5 (2015)

AAO template



9-Tertbutyl-Anthracene Ester (9TBAE) 
Nanorods

• 200 nm x 60 μm nanorods 

- single crystal (TEM)

- self-organize in anodic alumina 
oxide (AAO) templates 

• Expand ~8% 

• [4+4] photodimerization (365 nm)

in solution

then crystalized

Solution-grown 
dimer (SGD)



9-Tertbutyl-Anthracene Ester (9TBAE) 
Nanorods

in solid-state

?

 
a b 

unknown molecular 
conformation and 
crystal packing



Photoresponse of Bulk Crystals

Macroscopic 9TBAE crystals shatter – single crystal X-ray is out

= 365 nm

single crystals ~ 0.5 mm under irradiation

?



Monomer: herringbone

Solution-grown dimer (SGD): 
parallel layer structure

Solid-state reacted 
dimer (SSRD): ?

13C MAS

monomer

SSRD

SGD

13C Chemical Shift / ppm
150 100 50 0



Challenge to NMR 
Crystallography

Identify and characterize the 
crystal structure of the 
metastable solid-state reacted 
dimer and provide a rationale for 
the photomechanical response
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NMR Crystallography

Requirements:

1. A good problem!



NMR Crystallography of 9TBAE Nanorods

• Structure of the SSRD

- Powder X-ray

- Solid-state NMR 
spectroscopy

- Computational 
chemistry 

• Mechanism of expansion

- Orient the reactant 
and product unit cells 
with respect to the 
nanorod axis



Powder X-Ray Diffraction of 
Solid-State Reacted Dimer

• Powder X-ray 
- Indexing

- Pawley refinement

- Introduce and optimize 
molecular geometry and 
packing

- Rietveld refinement

- Quantum Espresso solid-
state DFT optimization

- Final ranking by Rwp

(weighted residuals)

• Suite of programs 
within Materials Studio
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Powder X-Ray Diffraction of 
Solid-State Reacted Dimer

• Powder X-ray 
- Indexing

- Pawley refinement

- Introduce and optimize 
molecular geometry and 
packing

- Rietveld refinement

- Quantum Espresso solid-
state DFT optimization

- Final ranking by Rwp

(weighted residuals)

• Identify eight candidate crystal 
structures for SSRD consistent with 
the PXRD – all orthorhombic crystal 
system



8 Candidate Crystals/2 Groupings

Large Asym:
P21ca
Pcc2

Inversion:
Pbca
Pccn

1-sided:
Aba2
A2122

Small Asym:
P21cn
P212121

Small Torsions:  Similar to monomer crystal

Similar to SGD

Equivalent unit cell 
dimensions 

Differ in symmetry of the 
molecular packing and 
ester torsion

Classify into 2 groups of 
structures

Progress.  But can we 
distinguish these sets?



NMR Crystallography

Requirements:

1. A good problem!

2. Candidate structures 



Requirements:

1. A good problem!

2. Candidate structures 

i. Powder diffraction / Rietveld

ii. Crystal structure/polymorph prediction

iii. Ab Initio Random Structure Searching 
(AIRSS)

iv. Powder NMR structural restraints, e.g.,  
NMR spin diffusion, through-bond 
connectivity …

v. …

See the many approaches in 
Harris, Wasylishen, and Duer



Requirements:

1. A good problem!

2. Candidate structures 

i. Powder diffraction / Rietveld

ii. Crystal structure/polymorph prediction

iii. Ab Initio Random Structure Searching 
(AIRSS)

iv. Powder NMR structural restraints, e.g.,  
NMR spin diffusion, through-bond 
connectivity …

v. …

… and Bryce (2024)

See the many approaches in 
Harris, Wasylishen, and Duer



8 Candidate Crystals/2 Groupings

Large Asym:
P21ca
Pcc2

Inversion:
Pbca
Pccn

1-sided:
Aba2
A2122

Small Asym:
P21cn
P212121

Small Torsions:  Similar to monomer crystal

Similar to SGD

Equivalent unit cell 
dimensions 

Differ in symmetry of the 
molecular packing and 
ester torsion

Classify into 2 groups of 
structures

Progress.  But can we 
distinguish these sets?



NMR Crystallography of 9TBAE Nanorods

• Structure of the SSRD

- Powder X-ray

- Solid-state NMR 
spectroscopy

- Computational chemistry 

• Use the chemical shifts as 
restraints in a first-principles 
screening to sort out the 
candidate structures

13C Chemical Shift / ppm
150 100 50 0



SSNMR of 9TBAE Nanorods

Isotropic shifts:
1H-13C HETCOR 

(50 kHz MAS, 14.1 T)



TOSS-deTOSS

Kolbert and Griffin, CPL 166, 87 (1990)

Site-specific 
chemical shift 
tensor 
components



xCSA
Hung and Gan, JMR 213, 196 (2011)



SSRD:  Experimental NMR Shifts

33 / ppm22 / ppm11 / ppmTensors

235.9176.213.2C5, C7

63.058.646.1C6

238.0174.621,8C12/C154

80.374.249.7C13

263.2141.2114.9C15

115.6110.029.1C16

iso / ppmIsotropic

6.88H1/H9

6.72H4/H6

5.49H5

0.80H-Me

29.2C-Me



NMR Crystallography

Requirements:

1. A good problem!

2. Candidate structures

3. NMR restraints



Selecting Crystal Structures using First-
Principles Chemical Shifts

• Use the chemical shifts as restraints in a first-principles screening

• 8 candidate crystal structures:  calculate shifts for each and rank by 
agreement with experiment

• Requires high-precision and high-accuracy first-principles chemical 
shift calculations for solid-state structures

• Quantitative ranking of structures
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Two Essential Components of NMRX

 First principles computational chemistry (DFT)
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 Quantitative statistics



First Principles Computational Chemistry
The molecular Hamiltonian

nuc elec nuc elec elec elec nuc nuc
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• Kinetic energy for each nucleus

• Kinetic energy for each electron

• Attraction of each electron to each nucleus

• Repulsion between each pair of electrons

• Repulsion between each pair of nuclei

Solving the Schrödinger equation gives all of the molecular properties: 
energy, dipole moment, chemical shifts …

i ip p eA 
In a magnetic field:

* Adapted from lecture notes by Prof. Greg Beran, UCR



First Principles Computational Chemistry

The Schrödinger equation with the molecular Hamiltonian is too complicated to 
solve exactly

Approximate approach: 

1. Born-Oppenheimer approximation – treat nuclei as fixed

2. Solve the electronic part of the Schrödinger equation using various levels of 
perturbation theory

a. Wavefunction methods

b. Density functional theory

   , ,H r R E r R 

* Adapted from lecture notes by Prof. Greg Beran, UCR



Wavefunction Methods
• All of these methods seek to solve the electronic 

part of the Schrödinger equation

• Hartree-Fock (HF) is the simplest method, but not 
very accurate

- Mean field approximation, ignores electron 
correlation 

• Higher methods introduce correlation through 
expanded bases

• CCSD(T) is the “gold standard" of quantum 
chemistry. Practical upper limit of accuracy.

• Computational cost grows steeply for better 
methods.

     1 2 1 2,r r r r  

* Adapted from lecture notes by Prof. Greg Beran, UCR



Density Functional Theory
• DFT has HF-like cost, but significantly better 

accuracy

• Hohenberg-Kohn Theorem

- There exists a 1:1 mapping between electron 
density ρ(r) and energy: E[ρ(r)]

- Problem: we don’t know what the mapping is

• Kohn-Sham DFT provides a workable solution for 
approximate density functionals 

- LDA, PBE, PBE0, B3LYP

• Note: Standard density functionals do not describe 
van der Waals dispersion, so should always 
augment with a dispersion correction

- Grimme’s D3, D4; Tkatchenko-Scheffler (TS) or 
Many-body Dispersion (MBD) …

* Adapted from lecture notes by Prof. Greg Beran, UCR



Basis Sets

Gaussian bases frequently used in molecular problems express each 
MO,     , as a linear combination of AOs, 

1 1 2 2 3 3 ... n nc c c c        

Each atomic orbital

represented by a sum of 

Gaussian functions

    a rr f r e 

  2arg r e

* Adapted from lecture notes by Prof. Greg Beran, UCR
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Gaussian Basis Set Primer

* Adapted from lecture notes by Prof. Greg Beran, UCR



Solid-State Computational Chemistry

• Plane-wave methods

- Plane-wave basis periodic on the crystal lattice

- CASTEP, Quantum-Espresso, CPMD

- Expensive to use hybrid functionals
… but Dracinsky, Unzueta, and Beran have a nice 

solution to this (PCCP 2019)

• Cluster/Fragment-based approaches

- Build large clusters to mimic the solid-state

- Atom-centered Gaussian orbitals

- Hybrid functionals more economical

- Convergence:  need large clusters



Hybrid Many-Body Interaction 
Fragment Approach

• Developed by Greg Beran (UCR)

• Efficient, fragment-based approach

• Intrinsically parallelizable

• Builds large clusters (30+ Å) to mimic 
the solid-state

• Atom-centered Gaussian orbitals allows 
DFT with hybrid functionals

• Highly accurate for NMR chemical shifts
References
Hartman & Beran, JCTC 10, 4682 (2014)
Hartman, Monaco, Schatschneider, Beran. JCP 143, 102809 (2015)
Hartman, Kudla, Day, Mueller, Beran, PCCP 18, 21686 (2016)
Harman, Neubauer, Caulkins, Mueller, Beran, JBNMR 62, 327 (2016)
Hartman, Balaji, Beran, JCTC 13, 6043 (2017)
Dracinsky, Unzueta, Beran, PCCP 21, 14992 (2019)



• Linear rescaling parameters are constants 
determined from benchmarks, not 
adjustable parameters

• Allow absolute, not just relative, 
comparison of theory and experiment

Benchmarks

refii m  

13C isotropic shifts

CASTEP

Hybrids

Non-Hybrids

Test Set



• Linear rescaling parameters are constants 
determined from benchmarks, not 
adjustable parameters

• Allow absolute, not just relative, 
comparison of theory and experiment

Benchmarks

refii m  

13C isotropic shifts

CASTEP

Hybrids

Non-Hybrids

References:
Hartman & Beran, JCTC 10, 4682 (2014)
Hartman, Monaco, Schatschneider, & Beran. JCP 143, 102809 (2015)
Hartman, Kudla, Day, Mueller, Beran, PCCP 18, 21686 (2016)

Calculated Shield (ppm)



Linear Rescaling

• Linear rescaling parameters are constants 
determined from benchmarks, not 
adjustable parameters

• Allow absolute, not just relative, 
comparison of theory and experiment

refii m  

Candidate 1:
Precise

13C Chemical Shift / ppm
150 100 50 0

Candidate 2: 
Accurate and 
Precise

Target Data

Internal referencing:
• Candidates 1 and 2 are equivalent

Absolute referencing:
• Candidates 2 is superior



Choice of Functional

13C isotropic shifts

CASTEP

Hybrids

Non-Hybrids

• Hybrid functionals do ~√2 better than 
the non-hybrids

• No significant differences within each 
class

Residuals

Calculated Shield (ppm)



NMR Crystallography

Requirements:

1. A good problem!

2. Candidate structures

3. NMR restraints

4. Accurate chemical shift prediction



Model Ranking and Selection
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Quantitative Statistics:

• Are the structures “good”?

• How much better is the best 
structure?



A Grad School Primer on Statistics
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L.J. Mueller in Modern NMR Crystallography (D.L. Bryce, ed; 2024); Faraday Disc, in press (2024)



Statistical Monte Carlo Simulations

“Offered the choice between mastery of a 
five-foot shelf of analytical statistics books 
and middling ability at performing statistical 
Monte Carlo simulations, we would surely 
choose to have the latter skill.” 

Press, Teukolsky, Vetterling, and Flannery, 
Numerical Recipes in C



The Normal Distribution
Single measurements are 

normally distributed

Normal Distribution

Z

2~ 0,Z N    σ

1. Pick a value from 
the normal 
distribution

2. Store result

3. Histogram results
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The Reduced-χ2 Distribution

Normal Distribution

Z

2~ 0,Z N   

1. Pick N values at a 
time from the 
normal distribution

2. Combine as the 
average weighted 
squared sum (the 
reduced-χ2)

3. Histogram results
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The Reduced-χ2 Distribution
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Residuals in Benchmark Studies are 
Normally Distributed

Residuals

Calculated Shield (ppm)



The Residuals

• The residuals in the test sets are 
normally distributed

Residuals

Probability Plot

CDF Residuals
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Model Selection in NMR Crystallography

estimated error from benchmark studies

• Rank models based on their agreement with experimental data using the red-χ2

• If the residuals are normally distributed (and they are), then the above figure of merit is 
reduce chi-squared distributed

• Can not only compare models to each other, but can determine if the model is  
consistent with the data in an absolute sense
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Chi-Squared Goodness-of-Fit Test

Example: If model has predictions for 10 
experimental shifts, then 95 out of 100 times, 
a correct model will have red-χ2<1.83.

If a model has red-χ2>1.83, it can be rejected 
at the 95% confidence level

95% confidence intervals depend on the 
degrees-of-freedom and can be obtained 
from statistical software or tables
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Benchmark for Structure Selection 

From a comprehensive set of 
candidate structures, the 
identification of (i) a single 
structure or (ii) a closely related 
ensemble of structures that 
satisfy the 95% confidence 
limits of the red-χ2 statistic

95%
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Structure Selection 

95%
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Data from Salager et al, JACS 132, 2564-2566 (2010) 95% CI, red-χ2<1.64 (16 dof)



Model Probabilities

But even when only one model satisfies 
the 95% confidence limits, this does 
not mean that there is a 95% chance 
that it is the correct, experimental 
structure!

95%
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To assign model probabilities, we need 
Bayesian analysis
• Engel et al., PCCP 21, 23385 (2019)
• Mueller, Faraday Disc in press (2024)



Bayes Theorem

Engel et al., PCCP 21, 23385 (2019)
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probability of the data, given the model: 
the likelihood function

model prior probability 

(what we typically know)

(what we actually want to know)

(a matter of life or death)



Professorial hyperfixation dementia (PHD)
• PHD Effects 1 in 10,000
• PHD Test sensitivity: 99%

Q: You test positive, what is the probability that you have PHD?

Prior Probabilities
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Good. So just because 
you have a positive PHD 
test, your life isn’t ruined

Prior prob

Likelihood



Bayesian Approaches

Traditional Bayesian analysis

• Engel et al., PCCP 21, 23385 (2019)
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Hierarchical Bayesian analysis

• Mueller, Faraday Disc in press (2024)

uniform

empirically derived

The UC Model

… or we could use statistical Monte Carlo analysis



A Game of Model Selection
Model 1: the correct experimental structure
• In the limit of perfect theory, its first-principles predicted properties 

are in exact agreement with experiment

Model 2: An incorrect model
• In the limit of perfect theory, its first-principles predicted properties 

deviate systematically from experiment by the set of differentials:
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1 2, ,...,M M M M
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 * * * *
1 2, ,..., nd d dd

 2 2 2 2
1 2, ,...,M M M M

nd d dd

dM1 dM2

d* d*+ΔY

Now reintroduce variable uncertainty into the predictions and ask: if the model with the 
smaller red-χ2 is always selected, what is the probability that each model will be chosen?

σ σ

     1 2, ,..., nY Y YY

Note: assuming all the 
error is in the predictions, 
not the experimental data. 
This can be relaxed.



Statistical Monte Carlo Simulations
Assumptions:

dM1 dM2
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1. predications are normally 
distributed about 0 and ΔY

2. ΔY also unknown, so pick from 
a second normal distribution 
with standard deviation s σ

s σ

σ σ



A Game of Model Selection
Assumptions:

1. predications are normally distributed about 0 
and ΔY

2. ΔY also unknown, so pick from a second 
normal distribution with standard deviation s σ

Data from Salager et al, JACS 132, 2564-2566 (2010)

3. s is also unknown, so pick from a third 
distribution in which the probability of models 
increases linearly with s

This corresponds to candidate models being 
uniformly distributed with respect to red-χ2

values, as seen experimentally: the “Uniform 
Chi-Squared (UC) Model”



A Game of Model Selection

Monte Carlo Simulation for 2 models with n chemical shifts measured:

1. Pick s from a distribution with linearly increasing probability

2. Pick n samples of X for model 1 and calculate:

3. Pick n samples of Y for model 2 and calculate:

4. Assign best-fit structure based on lower red-χ2

Best-fit = Model 1, correct assignment made

Best-fit = Model 2, incorrect assignment made

5. Store the ratio of the red-χ2 in either the correct or incorrect list
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UC Model Probabilities
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Best-Fit Model:

Alternate Model:

Probability that the best-fit model is the
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UC Model Probabilities
Hierarchical Bayesian inference can give these curves analytically
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UC Model Probabilities: Example

Two Models: A and B

10 NMR chemical shifts









2
red,A

2
red,B

1.12

1.51
 1.35R

Probability that A is the experimental structure: 73%

Probability that B is the experimental structure: 27%
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UC Model Probabilities: Example
Binder: mybinder.org/v2/gh/lenmueller/ucm_jupyter/main

github.com/Lenmueller

• Jupyter notebook

• Python script

All you need is a list of
red-χ2 values



UC Model Probabilities: Example
Binder: mybinder.org/v2/gh/lenmueller/ucm_jupyter/main

github.com/Lenmueller

• Jupyter notebook

• Python script

All you need is a list of
red-χ2 values



UC Model Probabilities

Data from Salager et al, JACS 132, 2564-2566 (2010)

All Shifts (n =18, f = 2)
Model

PUC(M|R) red-2

0.00702.501
0.00063.802
0.97590.853
0.00882.414

05.505
0.00372.816

05.557
09.628
06.789

0.00015.2410
07.6811
09.2212

0.00183.1513
08.7314
08.4115

0.00203.1116
08.8617
08.0018

0.00014.8819
09.1820
08.9521
08.7622
07.1823

1.6495% Confidence



NMR Crystallography

Requirements:

1. A good problem!

2. Candidate structures

3. NMR restraints

4. Accurate chemical shift prediction

5. Quantitative ranking of models



Solid-State Reacted Dimer

Weightings  / ppm:
• 1H isotropic:  0.32
• 13C isotropic:  1.4 
• 13C tensor:  3.0

• 8 candidate crystal structures
• Calculate shifts for each and rank 

using reduced chi-square
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99%

95%



All Spectroscopic Parameters

• Chi-squared goodness-of-fit can rule out large torsions for the ester groups

small torsions

large torsions

99%
95%
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All Spectroscopic Parameters

• Can rule out large torsions for the ester groups
• Best description has spacegroup Pccn

(but others show essentially equivalent results)

small torsions

large torsions

99%
95%

All Data (k =78)
Model

PUC(M|R)red-2

13.5%0.682Aba2
7.4%0.814A2122
16.4%0.644Pbca
24.2%0.573Pccn
20.2%0.605P21cn
18.2%0.624P212121

0.1%2.720P21ca
0.0%3.541Pcc2

1.2795% Confidence

UC Model Probabilities

13.5% 7.4% 16.4% 24.2% 20.2% 18.2% 0.1% 0%



Crystal Structure of the 
Solid-State Reacted Dimer

• Success: crystal structure of the solid-state 
reacted dimer

• Maintains the herringbone packing of the 
anthracene rings 

• The t-butyl ester groups are still rotated 
inward

• Consistent with the Topochemical Principle 
• But no obvious mechanism for expansion

- Volume per anthracene decreases 
slightly for the dimer unit cell

Monomer

SSRD



NMR Crystallography of 9TBAE Nanorods

• To determine of mechanism of 
expansion need to orient the 
monomer and dimer unit cells 
relative to the nanorod axis

• Direct NMR measurements on an 
ensemble of uniformly oriented 
single crystals nanorods in the 
AAO template



NMR Crystallography of 9TBAE Nanorods

Place in flat coil NMR probe with nanorod
long axis along the static magnetic field:  
one degree of orientation

Bo



Single Crystal Solid-State NMR of 9TBAE

D D D D’D’D’• consistent with rapid 
rotation of the t-butyl groups 
about the O-C bond

• averaged dipolar coupling 
along the rotation axis with 
a 1:3:3:1 intensity pattern



Solid-State NMR of Oriented 9TBAE Nanorods

Monomer SSRD

h ν



Two-State Single-Crystal to 
Single-Crystal Reaction

Monomer

SSRD



NMR Crystallography: Orienting the 
Monomer and SSRD Unit Cells

• Using the first principles 
shielding tensor and its 
alignment in the crystal 
frame, we can predict the 
spectra as a function of 
orientation of the unit 
cells in the magnetic field

Bo



TensorView

Magn Reson Chem 2019, 57: 211-223
SSNMR 2023, 123: 101849

• A software tool for displaying NMR 
tensors on molecular models

• Mathematica and MATLAB versions

MATLAB version with Leo Svenningson
No MATLAB license required



Spherical Tensors and Rotations
• Two ways to treat this are the direct rotation in Cartesian form and the 
decomposition of the Cartesian tensor into irreducible spherical components 
that rotate in subgroups of rank 0, 1, and 2

A AR

1 RARA

Mueller, Concepts in Magnetic Resonance A, 38A, 221-235 (2011)

ENC tutorials 2015, 2019 – online at www.enc-conference.org
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NMR Crystallography: Orienting the 
Monomer and SSRD Unit Cells

• Using the first principles 
shielding tensor and its 
alignment in the crystal 
frame, we can predict the 
spectra as a function of 
orientation of the unit 
cells in the magnetic field

Bo



Expansion
NMR Alignment:  7.4% 
Experimental:  8±2%

Aligned cells

Nanorod Expansion

Once aligned in rod frame, can measure microscopic 
expansion directly from equivalent lattice points

m m mu v w  r a b c

d d du v w     r a b c

Monomer unit cell axes

Transformed (effective)
dimer unit cell axes

Monomer:  (100) plane SSRD:  (012) plane



Underlying Mechanism

b



Conclusion
• NMR crystallography can establish the atomic-level basis for the macroscopic 

expansion

• Determines both the unit cells and their orientations relative to the shape change

rod axis



Solid-State Nuclear 
Magnetic Resonance

First Principles 
Computational Chemistry

X-Ray Diffraction

Funding: NIH MIRA

JACS 2016, 138, 15214-15226
ACIE 2016, 55, 1350-1354
PNAS 2022, 119(2) e2109235119
PNAS 2022, 119(4) e2114690119

Integrative Structural Biology of Enzyme 
Active Sites with NMR Crystallography



Tryptophan Synthase

• 143 kDa, α2β2 bi-enzyme complex

• Catalyzes the last two steps in the synthesis of L-Trp

• β-subunit cofactor: pyridoxal-5′-phophate (PLP)



Protonation States in the Active Site: 
Mechanism and Inhibition



Refining Active-Site Chemical 
Structure in Tryptophan Synthase

Challenge to NMR 
Crystallography:  Identify 
and characterize 
intermediates, including 
their protonation states

“Chemically-Rich”



Step 1:  X-Ray Crystal Structure

PDB ID
Res 
(Å)

Cation
β-Site 

Ligand(s)
α-Site 
Ligand

Intermediate/
Analog

4HT31.30Cs+-F9E(Ain)
5CGQ1.18Cs+L-TrpF9E(Ain)
7LV51.60Cs+L-HisF9E(Ain)
5BW61.82Na+-F6E(Ain)
4Y6G1.65Na+F6F6E(Ain)
4WX21.75Na+F6F6, F6E(Ain)
4ZQC1.54Na+F6F6, F6E(Ain)
4HN41.45Cs+L-SerF9E(A-A)
4HPX1.75Cs+LSer, BZIF9E(A-A)(BZI)
4HPJ1.45Cs+L-Ser, 2APF9E(C3)2AP

6DZ41.45Na+L-Ser-E(Aex)
6C731.65Cs+-F9βQ114A E(Ain)
6D0V1.64Cs+L-SerF9βQ114A E(A-A)
6DZO1.64Cs+L-SerF9βQ114A E(Aex)
6O1H1.70Cs+L-Ser, 2APF9βQ114A E(C3)
7MT41.40NH4

+L-SerF9E(A-A)
7MT51.50Cs+L-SerF9E(A-A)
7MT61.70Cs+LSer, BZIF9E(A-A)(BZI)

X-Ray Collaborators:  Eduardo Hilario (UCR Biochemistry) and Tim Mueser/Tori Drago (U Toledo)



α-Aminoacrylate Crystal Structure

• Formed by the acid-catalyzed 
loss of hydroxide

• Structure shows crystal 
waters in the active site 
adjacent to the substrate Cβ

• Tempting to think it could be 
the hydroxide!

PDBID:  4HN4



Step 2:  NMR Spectroscopy

• Prepare microcrystals of enzyme for solid-state NMR 
under analogous conditions as X-ray

• Make use of labeled protein, cofactor, and/or substrates 
and establish steady-state concentration of intermediates 
in the catalytically-active crystals

free substrate in mother liquor: 
solution-state NMR

bound substrate: magic-angle-
spinning solid-state NMR



Chemical Shifts / ppm

E(A-A)

145.6Cα

118.8Cβ

170.9C'

286.7N (S.B.)

257

289
O

151.2C2

17.5C2'

158.1C3

297.6N1

5.2P

24.2N (Lys)

SCH: NHMFL 

MAS cryoprobe
Bruker CH

MAS cryoprobe
Bruker CH

MAS cryoprobe
Bruker CH

DNP: NHMFLDNP: NHMFLDNP: NHMFL



Step 3:  First-Principles Computational Chemistry
• Place the chemistry of the active site in full structural 

context

• Cluster model of active site: ~700 atoms

• Select residues with at least 2 atoms within 7 Å of 
substrate/cofactor

• Initial hydrogen-only MD scan

• Fully quantum-mechanical geometry optimization and 
NMR chemical shift calculation using DFT and locally-
dense basis sets

• If we have the correct structure we expect 
13C to within 1.5 ppm RMSD
15N to within 4.3 ppm RMSD
17O to within 7.5 ppm RMSD

• Linear rescaling from shielding to shift determined a 
priori and benchmarked across test sets

- Quantitatively test absolute agreement of 
predicted shifts with experimental data

PDB ID:  4HN4

Benchmarked with Profs Greg Beran and Josh Hartman, UCR
Hartman & Beran, JCTC 10, 4682{4872 (2014)
Hartman, Monaco, Schatschneider, Beran. JCP 143, 102809 (2015)
Hartman, Kudla, Day, Mueller, Beran, PCCP 18, 21686 (2016)
Harman, Neubauer, Caulkins, Mueller, Beran, JBNMR 62, 327 (2016)



Model Rankings
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Fast-Exchange Equilibrium

89% phenolic /
enolimine

11% protonated Schiff base /
ketoenamine

95%
99%



Reactivity and Transition States



Reactivity and Transition States

Water placement 
and orientation 
points back to the 
acid-base catalytic 
residue and along 
the reaction 
coordinate for the 
formation of the α-
aminoacrylate 
intermediate 

rNO
rCO





Positional Uncertainties
• Quantified the positional uncertainties in our structures by adapting the 

method for calculating ADP from Hofstetter and Emsley for molecular organic 
crystals (JACS 2017) to our cluster model approach for enzyme active sites

• Use low temperature molecular dynamics (1-150 K) to generate chemically 
reasonable perturbed structures and calculate their shifts

• Plot the corresponding reduced-X 2 vs. the positional deviations

• Funnel plot that allows us to find structures consistent with the chemical shift 
restraints at 95% certainty

• These define anisotropic displacement parameters

Average positional RMSD  

• 0.11 Å for heavy atoms 

• 0.17 Å for H atoms



Positional 
Uncertainties

NMR CrystallographyX-Ray Crystallography

Average positional RMSD  

• 0.11 Å for heavy atoms 

• 0.17 Å for H atoms

• 6.5 x smaller than X-ray

(yes, this is not a fair 
comparison!)

• Similar in size to NMRX 
ADP for molecular 
organics crystals

• Suggests that NMRX 
ADP may be 
independent of 
molecular size



NMR-Assisted Protein Crystallography

• Structure and dynamics

• In TS, identifies the active site 
protonation states and tautomeric 
exchange

• Informs us about transition states 
into and out of the aminoacrylate 
species



Summary

1. Pick a good problem!

2. Candidate structures: comprehensive list

3. NMR restraints: as many as possible

4. Accurate chemical shift prediction: appropriate level 
of theory and basis set

5. Quantitative ranking of models: Monte Carlo!


